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Figure 1 | Example zero-shot behaviour of an agent playing a Capture the Flag task at test time. The agent has trained on 700k games, but
has never experienced any Capture the Flag games before in training. The red player’s goal is to put both the purple cube (the opponent’s
cube) and the black cube (its own cube) onto its base (the grey floor), while the blue player tries to put them on the blue floor – the cubes
are used as flags. The red player finds the opponent’s cube, brings it back to its cube at its base, at which point reward is given to the
agent. Shortly after, the opponent, played by another agent, tags the red player and takes the cube back.

Artificial agents have achieved great success in individual challenging simulated environments, mastering the par-
ticular tasks they were trained for, with their behaviour even generalising to maps and opponents that were never
encountered in training. In this work we create agents that can perform well beyond a single, individual task, that
exhibit much wider generalisation of behaviour to a massive, rich space of challenges. We define a universe of tasks
within an environment domain and demonstrate the ability to train agents that are generally capable across this
vast space and beyond. The environment is natively multi-agent, spanning the continuum of competitive, coopera-
tive, and independent games, which are situated within procedurally generated physical 3D worlds. The resulting
space is exceptionally diverse in terms of the challenges posed to agents, and as such, even measuring the learning
progress of an agent is an open research problem. We propose an iterative notion of improvement between succes-
sive generations of agents, rather than seeking to maximise a singular objective, allowing us to quantify progress
despite tasks being incomparable in terms of achievable rewards. Training an agent that is performant across such
a vast space of tasks is a central challenge, one we find that pure reinforcement learning on a fixed distribution of
training tasks does not succeed in. We show that through constructing an open-ended learning process, which dy-
namically changes the training task distributions and training objectives such that the agent never stops learning,
we achieve consistent learning of new behaviours. The resulting agent is able to score reward in every one of our
humanly solvable evaluation levels, with behaviour generalising to many held-out points in the universe of tasks.
Examples of this zero-shot generalisation include good performance on Hide and Seek, Capture the Flag, and Tag.
Through analysis and hand-authored probe tasks we characterise the behaviour of our agent, and find interesting
emergent heuristic behaviours such as trial-and-error experimentation, simple tool use, option switching, and co-
operation. Finally, we demonstrate that the general capabilities of this agent could unlock larger scale transfer of
behaviour through cheap finetuning. A summary blog post can be found here and a video catalogue of results here.

1| Introduction

Over recent years, deep reinforcement learning (deep RL)
has repeatedly yielded highly performant artificial agents
across a range of training domains (Mirhoseini et al., 2021;
OpenAI et al., 2019; Silver et al., 2017). The marriage of
expressive neural network architectures, together with scal-
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able and general reinforcement learning algorithms to train
these networks, has resulted in agents that can outperform
humans on the complex simulated games they were trained
on (Mnih et al., 2015). In addition, through multi-agent
deep RL, agents have also demonstrated impressive robust-
ness to held-out opponents – opponents that were never
encountered during training (Jaderberg et al., 2019). Some
of the most salient examples include robustness to the top
human professional players (Berner et al., 2019; Silver et al.,

https://deepmind.com/blog/article/generally-capable-agents-emerge-from-open-ended-play
https://youtu.be/lTmL7jwFfdw
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Figure 2 | (Left & Center) An instance of a task within the XLand environment space, composed of the world – the layout of the topology,
initial object and player positions, and player gadgets – as well as the game – the specification of rewarding states for each player in this
task. (Right) The observation of the red player consisting of the first-person view and the goal of the player.

2016; Vinyals et al., 2019). However, these agents are often
constrained to play only the games they were trained for –
whilst the exact instantiation of the game may vary (e.g. the
layout, initial conditions, opponents) the goals the agents
must satisfy remain the same between training and testing.
Deviation from this can lead to catastrophic failure of the
agent.

In this work we move towards creating an artificial agent
whose behaviour generalises beyond the set of games it was
trained on, an agent which is robust and generally capable
across a vast evaluation space of games. By training an
agent effectively across a massively multi-task continuum
we obtain a neural network policy that exhibits general
heuristic behaviours, allowing it to score reward in all hu-
manly solvable tasks in our held-out evaluation task set. In
addition, we see the agent being capable in tasks that not
only are explicitly held-out from training, but lie far outside
of its training distributions, including versions of hide and
seek (Baker et al., 2020) and capture the flag (Jaderberg
et al., 2019).
To produce a vast and diverse continuum of training

and evaluation tasks we develop an environment space,
dubbed XLand, that permits procedural generation of rich
3D worlds and multiplayer games (described by the goals of
the players). These span both two- and three-player tasks,
highly competitive and completely cooperative as well as
mixtures of both, balanced and imbalanced games, and
strategically deep games (e.g. Capture the Flag or XRPS,
see Section 3.2.3). The capabilities asked of players include
visual scene understanding, navigation, physical manipula-
tion, memory, logical reasoning, and theory of mind.

To train agents in this environment space, we first define
a multi-dimensional measure of performance, normalised
score percentiles, which characterises agent performance and
robustness across the evaluation task space. We create an
open-ended training process to iteratively improve the spec-
trum of normalised score percentiles. The training process
uses deep RL at its core with an attention-based neural net-
work architecture allowing implicit modelling of goals of
the game which are provided to the agent. The training

tasks consumed by the agent are dynamically generated in
response to the agent’s performance, with the generating
function constantly changing to keep a population of agents
improving across all percentiles of normalised score. This
population training is repeated multiple times sequentially,
each generation of agents bootstrapping their performance
from previous generations with policy distillation, each gen-
eration of agents contributing new policies to train against
in this multiplayer environment, and each generation re-
defining the normalised score percentiles as the frontier of
performance across task space is advanced. From exper-
imental results we demonstrate the clear benefit of each
component of this learning process, with the dynamic task
generation being particularly important for learning com-
pared to uniform sampling from task space.
The result of this training process is an agent that is gen-

erally capable across the held-out evaluation space. Qual-
itatively, we observe the agent exhibiting behaviours that
are generally applicable, rather than optimal for any specific
task. Examples of such behaviours include: experimentation
through directed exploration until the agent recognises a
rewarding state has been achieved; seeking another player
out to gather information of its state irrespective of its goal;
and tagging another player if it is holding an object that
is related to the agent’s goal irrespective of that player’s
intention. We also probe quantitatively the behaviour of
agents in test-time multi-agent situations and see evidence
of cooperation emerging with training. In addition to the
agent exhibiting zero-shot capabilities across a wide eval-
uation space, we show that finetuning on a new task for
just 100 million steps (around 30 minutes of compute in our
setup) can lead to drastic increases in performance relative
to zero-shot, and relative to training from scratch which
often fails completely.
The paper is organised as follows: first we introduce the

XLand environment space in Section 2 followed by an ex-
ploration of the quantitative properties of this environment
space in Section 3. In Section 4 we introduce the goal, met-
ric, and evaluation space we use to measure progress in
the open-ended environment. In Section 5 we detail the
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Figure 3 | Visualisation of the XLand environment space. (Left) Each dot corresponds to a single game and is positioned by a 2D UMAP
embedding of distance between games, with the size of the dot corresponding to the balance of the game, and the colour representing
competitiveness of the game (from blue – completely competitive, to purple – completely cooperative). (Right) Each game can be played
on a myriad of worlds, which we can smoothly mutate to traverse a diverse set of physical challenges. (Bottom) An XLand task consists of
combining a game with a world and co-players.

different components of our learning system and how these
work together. Section 6 describes the experimental results,
dynamics, and analysis of the produced agent. Finally, Sec-
tion 7 gives an overview of some related works, followed
by the conclusions of this work in Section 8. All proofs and
experimental details can be found in the Appendices.

2| XLand Environment Space

To promote the emergence of general behaviour in rein-
forcement learning, we seek an environment that exhibits
dimensions of consistency across tasks, as well as dimensions
of smooth variation.
The development of an environment exhibiting smooth

vastness with consistency is central to this work, and as
such, we introduce the XLand environment space. XLand
is a 3D environment consisting of static topology together
with dynamic objects simulated by rigid-body physics, with
multiple players (controllable by both humans or agents)
perceiving first person observations and egocentric move-
ment akin to DM-Lab (Beattie et al., 2016) and Quake III:
Arena (Jaderberg et al., 2019). Players have different world-
affecting gadgets at their disposal, are able to carry and hold
dynamic objects, and receive reward at each timestep based

on the state of the environment: relationships between play-
ers, objects, and topology. The environment is developed
and simulated using the Unity framework from Ward et al.
(2020), with an example task seen in Figure 2.

Consistency in this environment comes from: players
always having the same control interface, observation spec-
ification, gadget dynamics, and movement dynamics; ob-
jects being simulated with similar physical properties; and
a limited set of topological building blocks. However, the
remainder of the environment properties are vastly but also
smoothly variable: the layout and structure of topological
building blocks, the positions of objects, the lighting, and
crucially the specification of rewarding states for each player.
Finally, from a single player’s perspective, the policies of the
co-players can be vastly but smoothly variable.
The XLand task space, from the perspective of the target

player (e.g. an agent), denoted as ℵ, is a Cartesian product
of all possible worlds w ∈ W, games G ∈ G (defined as
one goal g7 ∈ G for each of the < players), and the policies
c7 ∈ Π of each of the remaining < − 1 players (the players
of the game not including the target player). Formally

ℵ :=W ×
∞⋃
<=1

[
G< × Π<−1

]
.
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Under this definition, each XLand task

x = (w, (g1, . . . , g<), (c2, . . . , c<)) ∈ ℵ

can be seen as a regular POMDP over a simulation state
space S. For notational simplicity we often refer to the pol-
icy of the target player as either c or c1. At each timestep
B, each player c7 receives its player-centric observations
o7B := ( 57 (sB), g7), where 57 extracts a pixel-based render of
the state of the world from the perspective of player 7 and
also provides the prioperception readings (e.g. whether
a player is holding something). Note, the reward from
the environment is not included in player observations.
Based on these observations, an action a7B of each player
is sampled from its corresponding policy a7B ∼ c7 (h7B), where
h7B = (o71, . . . , o

7
B) is a sequence of observations perceived so

far. The initial state of the simulation is uniquely identified
by w. The simulation is terminated after a fixed number
of ) = 900 iterations (two minutes when simulated in real-
time). The transition function comes from the simulation’s
physics engine that calculates the new state sB+1 from its
current state sB given the simultaneous actions of all the
players involved in a specific task (a7B)<7=1, analogously to
other multi-agent real-time environments (Berner et al.,
2019; Jaderberg et al., 2019; Vinyals et al., 2019). From
the perspective of a single player (such as a learning agent),
actions of all the co-players can be seen as part of the tran-
sition function, and thus the whole process relies only on
a1
B , the action of the target player. The reward function
@B : S → {0, 1} returns 1 if and only if a player’s goal is
satisfied in the current simulation state. Consequently, on
a given task, a player’s goal is to maximise the expected
future discounted number of timesteps in which its goal is
satisfied

Vc (x) := E ['c (x)] = E

[
)∑
B=1

WB@B

]
.

We will now describe in more detail the makeup of the
XLand environment, separating out the initial conditions
of the physical environment space, worlds, from the specifi-
cation of rewarding states for each player, games. We will
highlight the vastness and smoothness of these components
of XLand, and finally how these components combine and
interact to form a vast and complex space of tasks, Figure 3.

2.1| World Space

Tasks in XLand are embeddedwithin 3D physically simulated
worlds, an example of which shown in Figure 2. The layout
of the topology, the initial locations of the objects, the initial
locations of the players, and the gadgets at each players’
disposal are central to the behaviour being asked of a capable
player in this task. For example, consider the simple game
consisting of a single player, which receives reward when
the player is near a purple sphere. If the player is initially
located next to the purple sphere, the player needs to simply
stand still. If the purple sphere is initially located out of
sight of the player, the player must search for the object.

For notation simplicity we will omit the dependence of all returns/values
on the discount factor value W.

The topology could provide navigational challenges to this
search, requiring analysis of connected paths and memory
to quickly find the object. The physical interaction between
the initial location of the sphere and the topology or other
objects could cause the sphere to roll, requiring the player
to intercept the sphere once it is found, and if the player
has a freeze gadget this would allow the player to stop the
sphere rolling by freezing its motion.
The initial condition of a simulated world defines the

possible challenges faced by a player somewhat indepen-
dently of the game, the goals of the players. As such, we
define the world w as the initial state of the simulated 3D
world and its constituents, the state at the beginning of each
episode of play. The three main components of a world are
the topology, objects, and players. Worlds are procedurally
generated (Shaker et al., 2016).

Topology A world in XLand contains a static topology
which defines the unmovable landscape that is navigated
by the players, surrounded by four walls which enclose the
rectangular playable area, with variable lighting conditions.
The topology is generated by first selecting a rectangular
size of the world which encloses a grid, and subsequently
placing a number of predefined 3D topological tiles. These
tiles can be placed in any arrangement but cannot violate
local neighbourhood connectivity constraints, ensuring that
the arrangement of 3D tiles forms congruent and connected
playable regions.

Objects Objects are elements of XLand worlds that are
dynamic – they undergo physics simulation and can be ma-
nipulated by players. Each world defines a specified initial
location for each movable object as well as its orientation,
shape, colour and size. Object instances vary in size, colour,
and shape. There are three colours – black, purple, yellow –
and four shapes – cube, sphere, pyramid, slab.

Players The players of the game, which can be controlled
by agents, are given initial positions in the same manner as
objects. Players are coloured, and in this work we consider
up to three players, each being assigned a unique colour
of either blue, red, or green. In addition, each player is
assigned a gadget: either the freeze gadget or the tagging
gadget. The freeze gadget can be used by a player only
on an object and has the effect of freezing the dynamics
of the object so that it remains static and unmovable for 5
seconds, before becoming dynamic again and undergoing
physics simulation as normal. The tagging gadget can be
used by a player on an object or another player and has the
effect of removing the object or player from the world for 3
seconds, before the object or player is returned to the world
at its initial location, rather than the location at which it
was removed.

An instance of a worldw is therefore a particular topology,
combined with a set of objects with locations, and a par-
ticular set of players with locations and gadgets. An agent
playing in a world w will always experience identical initial
conditions.
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Our process of generating worlds leads to a vast and
smooth space of worlds, with these properties explored fur-
ther in Section 3.1. More details of this process can be found
in Section A.1.1 and Figure 32.

2.2| Game Space

Whilst a world defines the initial state of the simulated
physical space for the players to act in, a task requires a
game for these players to act towards. A game G consists of
a goal g7 ∈ G for each of the < players, G = (g1, . . . , g<). A
goal defines the reward function for the associated player,
and each player is tasked with acting in a way to maximise
their total reward, while perceiving only their own goal (and
not seeing goals of the co-players).
The state of our simulated environment s ∈ S describes

the physical world the players interact with. s consists of the
positions of all the objects, players, their orientations, veloci-
ties, etc. We define a set of atomic predicates q 8 : S → {0, 1}
in the form of a physical relation applied to some of the en-
tities present in the state. These relations include: being
near, on, seeing, and holding, as well as their negations,
with the entities being objects, players, and floors of the
topology. An example predicate could be near(purple
sphere, opponent), which is going to return 1 if and
only if one of the co-players is currently close to a purple
sphere. With the set of possible predicates fixed, a goal of a
player can be represented by a set of options (disjunctions)
over sets of necessary predicates for this option (conjunc-
tions). Consequently, an example goal could look like

g = (q 81 ∧ q 82 )︸        ︷︷        ︸
option 1

∨ (q 82 ∧ q 83 ∧ q 84 )︸                ︷︷                ︸
option 2

which, for some example predicates, could mean “Hold a
purple sphere (q 81) while being near a yellow sphere (q 82) or
be near a yellow sphere (q 82) while seeing an opponent (q 83)
who is not holding the yellow sphere (q 84)”. This is a canonical
representation of Boolean formulas, the disjunctive normal
form (DNF), which can express any Boolean formula (Davey
and Priestley, 2002). The corresponding reward function
@g (s) follows the transformation of disjunctions becoming
sums, and conjunctions becoming products, i.e. for a goal
g := ∨9

7=1 [
∧<7

8=1 q7 8]:

@g (s) =
9max
7=1

[
<7

min
8=1

q7 8 (s)
]
= min ©«

9∑
7=1

<7∏
8=1

q7 8 (s), 1ª®¬ .
A simple example in our game space would be the game of

hide and seek. The two-player version of the game consists
of two goals (gseek, ghide) where the goal of one player con-
sists of just one option of one predicate, gseek = qseek =

see(me, opponent), and the goal of the co-player is
ghide = qhide = not(see(opponent, me)).
This general construction of games allows us to repre-

sent a vast number of highly diverse games, ranging from
simple games of finding an object to complex, strategically
deep games. Importantly, the space of games is also smooth,
allowing for gradual transition between games. These prop-
erties are explored in Section 3.2.

2.3| Task Space

A task in XLand x is the combination of a world w, a game
G and the policies of the co-players (c2, . . . , c<). With this
view, despite its clearly multi-agent nature, we can view
each task as a standard single-player problem for c1.
The combination of a world, a game, and co-players can

interact in complex ways to shape the space of optimal
behaviours required of the player. Consider the example
game where the player has a goal consisting of two options
“Hold a purple sphere or hold a yellow sphere” and there is one
co-player with the identical goal. If the game is played in a
fully open world where initially both rewarding objects are
visible, the challenge to obtain the optimal behaviour is to
choose to navigate to the closest object. If the paths to each
object are occluded along the route, the optimal behaviour
might require memory to reach its goal object, remembering
the path to take. If the world is such that only one of the
objects is initially visible but out of reach on a higher floor,
the optimal behaviour may be to manipulate another object
to reach the goal object. Now consider the variation of co-
player policies. If the co-player picks up the purple sphere
and moves away quickly, the optimal behaviour of the player
may be to ignore the purple sphere and navigate to hold
the yellow sphere. However, if the co-player seeks out the
player and uses its tagging gadget on sight, hindering the
player’s ability to navigate to the goal object, the optimal
behaviour of the player may be to avoid being seen or to tag
the co-player itself, before navigating to a goal object.

A result of this complex interaction is that the cross prod-
uct of a set of worlds, games, and co-player policies creates
a set of tasks with challenges – optimal behaviours of the
player – which is larger than the sum of the number of
worlds, games, and co-player policies.

3| Environment Properties

The previous section introduced the XLand environment
space and its tasks’ construction from worlds, games, and
co-players. In this section we analytically and empirically
explore some of the properties of this space, focusing on
world and game properties independently. In both cases we
explain how these components give rise to the properties of
vastness, diversity, and smoothness.

3.1| World Properties

The worlds are high dimensional objects consisting of topol-
ogy, object locations, and player locations. To highlight the
characteristics of worlds, we can describe a world in terms
of the navigational challenges it poses due to the topology
and the objects.
Our worlds are all grid-aligned, with varied dimensions

of each single tile, some of which (ramps) one can use to
navigate to a higher level. We consider two world represen-
tations: first, the height map, g(w) :W → [0, 1]E×ℎ where
E, ℎ are the width and height of the world respectively, and
each element in g(w) is the height of the top of the tile at
the location of the element. The second representation is a
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Figure 4 | Visualisation of the bounds of the number of possible
world topologies of shape (<, <) as a function of a world size <. See
Section A.1.2 for details.

world topology graph, representing navigation paths.
Definition 3.1 (World topology graph). For a given worldw,
we define a directed graph �w = (+w, �w) where each tile of a
world is represented as a vertex, and an edge exists between
two vertices D7 and D 8 if and only if it is possible for a player
to travel between the two neighbouring tiles in a straight line
(they are on the same level, the height of D 8 is lower so the
agent can fall to it, or D 8 is an accessible ramp leading to a
higher level).

Given this graph, we can define various proxy measures
of navigational complexity by looking at the distribution of
paths between every pair of vertices.
Definition 3.2 (Shortest paths distribution). For a given w
we define dsp (w) as a distribution of lengths of shortest paths
between every pair of vertices in �w.
Definition 3.3 (Resistance distances distribution). For a
given w we define d(w) as a distribution of resistance dis-
tances (Klein and Randić, 1993) between every pair of vertices
in �w, where a resistance distance between D7 and D 8 is given
by Γ77 + Γ8 8 − Γ7 8 − Γ87 for Γ = (! + 1

E·ℎ1E·ℎ×E·ℎ)
†, ! being

the Laplacian matrix of �w and † being the Moore-Penrose
pseudoinverse (Penrose, 1955).

3.1.1| World Vastness

Let us start by discussing the vastness of worlds by looking
at how many topographies are possible in XLand. In prin-
ciple, every combination of tiles could be utilised, creating
#E·ℎfloors · #tiles possibilities. However, as discussed previously,
constraints on tile placements exist to ensure ramps con-
nect levels and there are accessible playable regions. Con-
sequently, it is reasonable to count the number of world
topologies where all ramps are properly connected, and that
have at least 50% of the world fully accessible (there exists
a way to go from every point to any other point within the
accessible area). We estimate a lower bound to this quantity
with Monte Carlo sampling, and present results in Figure 4
(see Section A.1.2 for details). For worlds of size 9 by 9 tiles,
(9,9), we have more that 1016 unique topologies (corrected
for 8 possible symmetries) – a vast space of worlds.

3.1.2| World Smoothness

We hypothesise that small changes in the world topography
lead to small changes in the overall navigational complexity.

Figure 5 | An empirical visualisation of the world space smoothness.
We take a set of worlds of size (9,9) and then apply local mutations
up to 30 times. (Top) Each dot on the plot represents one pair
of mutated worlds, with the x-axis showing the !2 distance in tile
space, and the y-axis showing the Cauchy-Schwarz Divergence
between distributions of reachability graph resistances d(w) (left)
and shortest path distances dsp (w) (right). The pink line represents
the empirical smoothness coefficient. The colour of each dot encodes
the number of mutations between the pair of worlds, from 1 (blue)
to 30 (red). (Bottom)We linearly embed each of the worlds, trying
to find a linear projection where the entropy of the corresponding
distribution (in colour) can be well described by a distance from
the center of the projection. One can see how small changes in
the world space (position) lead to small deviations of the entropy
(colour).

To formalise this claim we take a set of 9 by 9 worlds, and
then apply local changes to each of them, in the form of
moving tiles around, changing floors, etc. Given this set of
mutated worlds, we plot the relation between the change
in the topography

‖w −w′‖W :=

√√√√ E,ℎ∑
7, 8=1
[g(w)7 8 − g(w′)7 8]2

and the Cauchy-Schwarz Divergence (Nielsen, 2012)

DCS (>, ?) := −H2 (>) − H2 (?) + 2H×2 (>, ?)

:= log
∫

>2 (F)3F + log
∫

?2 (F)3F

− 2 log
∫

>(F)?(F)3F,

between the corresponding shortest paths distributions dsp
and resistance distances distributions d. The top row of Fig-
ure 5 shows that there is a visible linear bound in the change
in the paths distributions, suggesting L-Lipschitzness.
To further confirm this claim, we take the same set of

worlds and find a linear projection (Section A.1.3) that
embeds our worlds in a 2-dimensional space, with each point
coloured by its corresponding Renyi’s quadratic entropy
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Figure 6 | An example array of worlds from the XLand environment space.

Figure 7 | The distributions of distances between two worlds, w
and w′, with different number of local tile mutations between them
(colour). The distances are the navigational resistance (left) and
topology distance (right). With only a few mutations the character-
istics of the world can change a lot.

H2 of the distribution of paths over its navigation graph,
Figure 5 (bottom). We can see that the world space appears
smooth.

3.1.3| World Diversity

The world topology, jointly with object and player positions,
allow one to express arbitrary navigation challenges, includ-
ing various types of mazes, but also complex maps with dif-
ficult to access regions, and occluded visibility similar to the
maps used in competitive first-person video games (Jader-
berg et al., 2019), see Figure 6.
To illustrate diversity, one can see that the Cauchy-

Schwarz Divergence between resistance distances distri-
butions d as well as topology distances can be increased
with relatively few local tile mutations (see Figure 7). This
confirms that, despite being a relatively smooth space, our
world space spans diverse worlds, which can be found with
local search methods (e.g. evolutionary algorithms).

3.2| Game Properties

Once multiple goals are combined to form a game, new com-
plexity emerges – the ways in which the objectives of players
interact, compete, and affect each other. This complex inter-
action is central to the fields of Game Theory andmulti-agent

RL (Balduzzi et al., 2019; Shoham et al., 2007). To char-
acterise the properties of games, we focus our analysis on
three dimensions of games: the number of options, explo-
ration difficulty, and their cooperative/competitive/balance
aspects.
The first property is the number of options in a given

goal (and a game). Having multiple options for getting a
reward in each timestep encourages players to be constantly
evaluating the environment state, assessing which option is
the more rewarding one.
To define the more complex game properties, recall that

every goal is a Boolean expression over a set of 3 predicates
q 8. Let us define q : S → {0, 1}3 , a mapping that assigns
each simulation state s to a binary vector of 3 predicate
truth values. A goal is simply a mapping from q(S) to
{0, 1}, labelling which predicate states are rewarding. We
denote by #q := #{q(s) : s ∈ S} the size of the predicate
state space. We define a distance metric between two goals
g7 and g 8 as

‖g7 − g 8‖G :=
#{q(s) : @g7 (s) ≠ @g 8 (s)}

#q
∈ [0, 1].

This distance between two goals is the fraction of different
predicate evaluations where one goals is rewarding, and the
other goal is not. Analogously, between two games

‖G7 − G 8‖G := 1
<

<∑
9=1
‖(G7)9 − (G 8)9‖G ∈ [0, 1].

This leads to the following observation.
Observation 3.1. (G, ‖ · ‖G) and (G, ‖ · ‖G) are metric spaces.

In particular we have
g7 ≡ g 8 ⇐⇒ @g7 = @g 8 ⇐⇒ ‖g7 − g 8‖G = 0

G7 ≡ G 8 ⇐⇒ ‖G7 − G 8‖G = 0.

This allows us to define the next game property: explo-
ration difficulty.
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Definition 3.4. Exploration difficulty of a game is the fraction
of predicate states in which no player is being rewarded.

^(G) = ^((g1, . . . , g<)) =
#{q(s) : ∀9@g9 (s) = 0}

#q

we will also call the unnormalised exploration difficulty the
quantity

ˆ̂(G) := #q^(G).

One simple interpretation of this quantity is: assuming
each of the predicates is independent and equally probable
to be (dis-)satisfied at a given timestep, then 1 − ^(g) de-
scribes the probability of at least one player getting a reward.
Consequently, we will refer to goals as trivial if ^(g) ∈ {0, 1},
since these are goals where every policy is an optimal policy
(similarly we say a game is trivial from the perspective of
the main agent if ^(g1) ∈ {0, 1}).
Proposition 3.1. For every goal g where ^(g) = 0 or ^(g) = 1
every policy is optimal.

Given exploration difficulty, we now define a new prop-
erty – the notion of cooperativeness – that will assign a
number between 0 and 1 to each game, where a game of
cooperativeness 1 is going to be one where all players always
get rewards jointly, and cooperativeness 0 when they can
never both get a reward at the same timestep.
Definition 3.5. Cooperativeness is the fraction of predicate
states in which all the players are being rewarded compared
to the number of predicate states in which at least one of them
is.

coop(G) = coop((g1, . . . , g<)) =
#{q(s) : ∀9@g9 (s) = 1}

#q − ˆ̂(G)

Symmetrically, competitiveness can be expressed as
comp(G) = 1−coop(G) or more explicitly with the following
definition.
Definition 3.6. Competitiveness is the fraction of predicate
states in which some but not all players are being rewarded
compared to the number of predicate states in which at least
one of them is.

comp((g1, . . . , g<)) =
#{q(s) : max9 @g9 (s) ≠ min9 @g9 (s)}

#q − ˆ̂(G)

Finally, let us introduce the property of balance of a game.
In game design, the issue of one player of the game having
a constant advantage is a common one, referred to as an
imbalance. Whilst fully symmetric, simultaneous moves
games are fully balanced by construction, it is a complex
problem to assess the degree of balance when the game
is not symmetric, i.e. when the goals of each player are
different.
Definition 3.7. Balance with respect to game transformations
Ξ ⊃ {identity} is the maximal cooperativeness of the game
when goals are transformed with elements of Ξ:

bal(G) = max
b∈Ξ

coop(b(G)).

With the above definition it is easy to note that when
Ξ = {identity} then balance is equivalent to cooperativeness.
Consequently, balance can be seen as a relaxation of the no-
tion of cooperation, under the assumption that some aspects
of game rules are equivalent (equally hard). For XLand we
note that colours of objects should have negligible effect on
the complexity of a task, meaning that satisfying a predi-
cate hold(me,yellow sphere) should be equally hard
as hold(me,purple sphere). Consequently, we use Ξ to
be the set of all bijective recolourings of objects in goals that
are consistent across the entire goal.

3.2.1| Game Vastness

Let us denote the number of unique atomic predicates as
<0, the number of options a goal consists of as <= and the
number of predicates in each option as <2. There are exactly
<
<2 ·<=
0 goals that differ in terms of their string representation,

however many goals are equivalent such that

g7 ≡ g 8 ⇐⇒ @g7 = @g 8 .

For example, the goal of seeing a purple sphere or not seeing
a purple sphere is equivalent to the goal of holding a yellow
cube or not holding a yellow cube, both corresponding to
@(s) = 1. Counting the exact number of unique @ functions
that emerge from <7 options each being a conjunction of <2
out of <0 predicates is a hard combinatorial problem, but
under the assumption that each atomic predicate (apart from
their negations) is independently solvable we can provide a
lower bound of the number of unique goals.
Theorem 3.1. Under the assumption that each atomic predi-
cate that does not involve negation is independently solvable,
the number of unique <-player games #G with respect to the
reward functions they define satisfies:

1
<!

[
1
<=!

<=∏
7=1

((
<0/2 − 7 · <2

<2

)
2<2

)]<
≤ #G ≤

(
<0

<2

)<·<=
.

Figure 8 shows these bounds as functions of the number
of options, atoms and conjunctions. As an example we see
that with 3 options, each a conjunction of 3 predicates, using
a set of 200 atomic predicates (the approximate number
available in practice) gives us more than 1037 unique 2-
player games (composed of more than 1018 goals) – a vast
space of games.

3.2.2| Game Smoothness

For our XLand task space to exhibit smoothness, the game
space itself must be smooth: if we change our games by a
small amount, the game properties of interest should only
change by a small amount. We show that the interesting
properties of our games are L-Lipschitz functions.
Proposition 3.2. Exploration difficulty is a 1-Lipschitz func-
tion, meaning that for any G7,G 8 we have

‖^(G7) − ^(G 8)‖ ≤ ‖G7 − G 8‖G.

Theorem 3.2. coop((·, g′)) is a 1
1−9 -Lipschitz function wrt.

‖ · ‖G for any g such that ^((g, g′)) = 9.

8
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Figure 8 | Bounds on the number of 2-player games provided by
Theorem 3.1 as functions of the number of options and atomic
predicates. Our evaluation space (Section 4.2) spans approximately
200 atomic predicates and up to 3 options.

In a natural way the same is true for competitiveness.

Observation 3.2. comp((·, g′)) is a 1
1−9 -Lipschitz function

wrt. ‖ · ‖G for any g such that ^((g, g′)) = 9.

Therefore, if we change one of the goals by a small amount,
we have an upper bound on the change in exploration dif-
ficulty, cooperativeness, and competitiveness of the whole
game.
Figure 9 verifies these properties empirically by showing

the relation between the distance in game space compared
to the change in competitiveness and exploration difficulty.
We also provide a 2D projection of sample games using PCA,
showing that these two properties are visible, suggesting
they explain a lot of variance in game space. These examples
show analytically and empirically the smoothness of game
space.

3.2.3| Game Diversity

We have shown that the game space consists of vastly many
games, and that small changes in their definitions lead to
small changes in properties of interest. One missing aspect
is to show how diverse this game space is, that eventually,
after taking many small steps, one can change a game into
a wildly different one.

Theorem 3.3. For every two player game G such that ˆ̂(G) =
9 and a desired change in competitiveness; ∈ (−comp(G), 1−
comp(G)) such that 9|;| ∈ ℕ there exists a G′ such that
comp(G′) = comp(G) + ; and ‖G − G′‖G ≤

9 |; |
2 .

To see qualitatively the diversity of games, we present a
few examples of games showcasing a range of challenges
imposed on players.

Figure 9 | Empirical confirmation of game space smoothness with
respect to exploration difficulty (^, left) and competitiveness (comp,
right). We took a single game, then created 1000 similar games
by performing simple edits on one of its goals (g′) creating a new
one (g′′)– removal of an option/relation, adding a new option/re-
lation, substitution of a relation, etc. (Top) Each of these games
corresponds to a point, with the x-axis being its distance from one
randomly selected anchor game (G,G′) (with the exploration diffi-
culty reported in the title), and on the y-axis the difference in its
comp or ^ (colour corresponds symmetrically to ^ on comp plot and
vice versa). The pink line is the upper bound from Proposition 3.2
and Theorem 3.2. (Bottom) The matrix of pairwise distances be-
tween these games is computed, and PCA used to embed them on
a plane, followed by representing comp and ^ with a point colour.
In both cases one can see very smooth transitions.

Simple navigation task XLand games include simple chal-
lenges such as a player being tasked with finding an object
of interest and grabbing it. Tasks like this challenge naviga-
tional skills, perception, and basic manipulation.

g1 := hold(me, yellow sphere)
g2 := near(me, yellow pyramid)

^(G) = 1
4 comp(G) = 2

3 bal(G) = 7
15

Simple cooperation game Setting the goal of both play-
ers to be identical gives a fully cooperative, balanced game,
which challenges a player’s ability to navigate and manipu-
late objects, but also to synchronise and work together.

g1 := near(yellow pyramid, yellow sphere)
g2 := near(yellow pyramid, yellow sphere)

^(G) = 1
2 comp(G) = 0 bal(G) = 1

Hide and Seek A well known game of hiding and seeking,
that has been used in the past as a source of potentially
complex behaviours (Baker et al., 2020). This is an example

9
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of a simple, fully competitive, imbalanced game in XLand.

g1 := see(me, opponent)
g2 := not(see(opponent, me))

^(G) = 0 comp(G) = 1 bal(G) = 1
3

Capture the Cube The competitive game of Capture the
Flag has been shown to be as a rich environment for agents
to learn to interact with a complex 3d world, coordinate
and compete (Jaderberg et al., 2019). Each player must get
the flag (for example represented as a cube) to their base
floor to score reward. An example one-flag instantiation of
this game in XLand (with a supporting world) is

g1 := on(black cube, blue floor)∧
not(on(black cube, red floor))

g2 := on(black cube, red floor)∧
not(on(black cube, blue floor))

^(G) = 1
4 comp(G) = 1 bal(G) = 1

XRPS A final example is that of XRPS games, inspired by
the study of non-transitivites in games leading to strategic
depth (Czarnecki et al., 2020; Vinyals et al., 2019). We
give each player three options to choose from, each one
being explicitly countered by exactly one other option. A
player can choose to pick up a yellow sphere, but it will get
a reward if and only if an opponent is not holding a purple
sphere; if it picks up a purple sphere the reward will be given
if and only if the opponent does not pick up a black sphere,
and so on. With these cyclic rules, players are encouraged
not only to navigate and perceive their environment, but
also to be aware of opponent actions and strategies, and to
try to actively counter potential future behaviours, leading
to potentially complex, time-extended dynamics.

ĝrock := hold(me,yellow sphere)∧
not(hold(opponent,yellow sphere))∧
not(hold(opponent,purple sphere))

ĝpaper := hold(me,purple sphere)∧
not(hold(opponent,purple sphere))∧
not(hold(opponent,black sphere))

ĝscissors := hold(me,black sphere)∧
not(hold(opponent,black sphere))∧
not(hold(opponent,yellow sphere))

g1 := ĝrock ∨ ĝpaper ∨ ĝscissors
g2 := ĝrock ∨ ĝpaper ∨ ĝscissors

^(G) = 1
4 comp(G) = 1 bal(G) = 1

4| Goal and Metric

In Section 2 we introduced the XLand environment and
explored some of the properties of this space in Section 3
such as the vastness, diversity, and smoothness across tasks.
We now turn our attention to training an agent on XLand.

To train an agent c in an episodic environment such as
XLand, one generally aims to maximise the expected return
of the agent

Vc (Pc) := EPc (ℵ) ['c (x)] .

where Pc is an agent-specific distribution over tasks.
A challenge in evaluating the performance of an agent in

this massively multitask environment comes from the fact
that each task can be of completely different complexity.
The optimal value

V∗ (x) := max
c

Vc (x)

of one task can be of a different order of magnitude than the
optimal value of another task V∗ (x′), i.e. V∗ (x) � V∗ (x′).
Consequently, simply averaging the agent’s value across
all tasks to form a single score will overemphasise tasks
with large optimal values. Even if one was able to sensibly
normalise value per-task, with a big enough set of tasks,
averaging will remove relevant information regarding agent
failures. For example, averaging will not surface an agent’s
failure modes on some tasks if these tasks do not occupy
a big part of the task space (Balduzzi et al., 2018). This
becomes an even bigger issue if there is no particular ground
truth test distribution of interest, but rather our goal is to
find a policy that is generally capable.
A Game Theoretic solution would be to focus on the in-

fimum performance (the worst-case scenario (Nash et al.,
1950)), since performance on this task will always lower
bound any expectation over a distribution defined over the
same set. Unfortunately, the infimum suffers from not pro-
viding any notion of progress or learning signal if there are
any tasks that are simply impossible or extremely hard.

4.1| Normalised Percentiles

In this work we seek to create generally capable agents in the
whole XLand task space. General capability is not strictly
defined but has some desiderata:

• Agents should catastrophically fail on as few tasks as
possible.

• Agents should be competent on as many tasks as possi-
ble.

• Broad ability is preferred over narrow competency.

These desiderata cannot be encapsulated by a single number
describing an agent’s performance, as they do not define
a total order (Balduzzi et al., 2019). We move away from
characterising agents purely by expected return, and in-
stead consider the distribution of returns over a countable
task space. However, for large task spaces this is a very
high-dimensional object. In addition, due to the drastically
different return scales of tasks, returns cannot be compared
and one needs knowledge of each individual task to interpret
the significance of reward. Naturally, one could normalise
the return per task by the return of the optimal policy on
each specific task. However, in practice:

Vc (x) is interpreted as an expectation over the Dirac delta distribution
around x.
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Figure 10 | The process of computing normalised percentiles. Tasks vary significantly in terms of their complexity, some have much higher
values of optimal policies than others. We normalise the performance of the agent by an estimate of an optimal policy score – using the
Nash equilibrium of trained agents – providing a normalised score, which after ordering creates a normalised percentile curve. This can be
iteratively updated as new trained agents are created.

• an optimal policy is not known a priori,
• we want to use these normalisers over the entire en-

vironment space, which means that we need to know
a single optimal policy for the entire space, and then
normalise by its score on each task.

In order to address these issues we follow two practical
simplifications.

First, to address the need of having one optimal policy for
the entire space, we compute the normalisation factor for
each game independently, and then combine them into a
global normaliser.

Second, even with the above simplification we do not have
access to an optimal policy per game. However, we can take
ideas from multi-agent training algorithms that eventually
converge to a Nash equilibrium (Heinrich and Silver, 2016;
Marris et al., 2021; McMahan et al., 2003). We iteratively
build a set of agents that are capable of solving a specific
goal, and use the best mixture (Nash equilibrium) of them
as a normalising constant. As training progresses and our
agents become better at satisfying the goal, they will beat
the existing Nash equilibrium and improve the normalising
constant. This dynamic provides us with an iterative notion
of improvement for a multi-task environment, rather than
a fixed numerical quantity to describe progress. It is akin
to theoretical results showing that in multi-agent problems
it is impossible to have a fixed objective, because finding
better agents and improving the quality of evaluation are
the same problem (Garnelo et al., 2021). These normalisers
give us a normalised score per task.
Finally, to mitigate the problem of having a high-

dimensional normalised score distribution, we characterise
the distribution in terms of the percentiles of normalised
score, up to a maximum of the 50th percentile (median
normalised score):
perf (c|g,�B) := min

(c 8,g 8)
Ew ['c (w, (g, g2, ...g<), (c2, ...c<))]

norm(g|�B) := max
c

perf (c|g,�B) = NashValue(g|�B)

p̂erf (c|g,�B) := perf (c|g,�B)
norm(g|�B)

∈ [0, 1]

perc(c|�B) [9] := P9 (p̂erf (c|g,�B)), for 9 ∈ {0, . . . 50}

where P9 is the 9th percentile and both min and max op-
erations over policies operate over convex combinations of
policies from a corresponding population �B . Figure 10 illus-
trates this process. Each agent’s performance is described as
51 numbers between 0 and 1, with each number being the
normalised score at each integer percentile in the range of
0 to 50 (inclusive), which forms a non-decreasing sequence

perc(c) [9 + 1] ≥ perc(c) [9].

One can read out various human interpretable quantities
from this representation, e.g. perf (c) [0] is the infimum –
the normalised score an agent obtains on the hardest game;
perf (c) [50] is the median normalised performance; the
smallest 9 such that perf (c) [9] > 0 informs us that an agent
scores any reward in at least (100− 9)% of games (and thus
provides a notion of coverage/participation).

We say an agent c is better than agent c′ if and only if it
achieves at least as good a score for every percentile, and
on at least one percentile it achieves a strictly better score,
formally:

c ��B c
′ ⇐⇒ ∀9perc(c|�B) [9] ≥ perc(c′ |�B) [9]

c ��B c
′ ⇐⇒ ∃9perc(c|�B) [9] > perc(c′ |�B) [9]

∧ c ��B c
′.

Let us refer to our desiderata – if agent c fails catastroph-
ically (never achieves any reward) on fewer tasks than c′

then it will have non-zero values on a larger number of
percentiles, and thus captured in our notion of being better.
Conversely, if catastrophic failures are more common, then
c will not be considered better (it can be non-comparable or
worse). The notion of competency refers to the fraction of
the score obtained by the Nash equilibrium over known poli-
cies, and thus similarly by being competent on more tasks,
c will increase its values on smaller percentiles. Finally, a
narrow competency will be visible in low scores over low
percentiles, and despite high scores being obtained on high
percentiles – such an agent will not be considered better. In
addition, cutting our percentiles at 50 means that an agent
that is an expert on less than half of the games, but does

'Uc+(1−U)c′ (x) := U'c (x) + (1 − U)'c′ (x)
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not score any points on remaining ones, will be considered
worse than an agent of broader ability.

To summarise, we propose to use the following tools to
measure and drive progress of general capabilities of agents:

• to normalise performance by the estimated highest ob-
tainable score,

• to iteratively improve the estimate of the highest ob-
tainable score,

• to evaluate agents across normalised score percentiles,
creating a multi-dimensional performance descriptor,

• to require Pareto dominance over said descriptor to
guarantee improvements with respect to our desider-
ata.

4.2| Evaluation Task Set

The normalised percentile metric described in the previous
section provides a way to compare agents and drive learning
with a lens towards general capability. However, this met-
ric is still evaluated with respect to a distribution of tasks
Pℵ. The XLand task space as defined in Section 2 is pro-
hibitively large, and as such we need to create a manageable
evaluation task set against which to assess agents’ general
capability.
Given a budget number of evaluation tasks (e.g. on the

order of thousands), arbitrarily sampling tasks from ℵ could
risk critically underrepresenting the vastness and diversity
of the underlying task space, with aliasing also hiding the
smoothness property. As such, we define an evaluation task
space that samples tasks spanning a smaller but representa-
tive subspace of XLand tasks, and skew sampling to ensure
uniform coverage of interesting world and game features.
Finally, we combine these evaluation worlds and games with
pretrained evaluation policies to give us an evaluation task
set.

Evaluation worlds For evaluation, we want a set of worlds
that expose agents to a range of topological challenges. We
use a world-agent co-evolution process (Section A.1.1, Fig-
ure 33), saving the training distribution of worlds created at
each point in training of this process. This gives a collection
of worlds where the earlier-created worlds are generally
topologically simpler than those created later in training.
Uniformly sampling this collection of worlds with respect to
the creation time gives a set of worlds spanning the range
of topological complexity (as defined by an agent learning
to find an object). We also randomly apply reflections and
resampling of object positions to this set of worlds. Finally,
we add additional Wave Function Collapse (Gumin, 2016)
generated worlds, biased towards specific topological ele-
ments that we observe rarely: ones containing single central
islands and door-like bottlenecks separating play areas. The
gadget of each player is uniformly sampled and the colour
ordering of each player randomly permuted. Exactly 12
objects are placed into each evaluation world, one of each
colour-shape combination.

Evaluation games In the game space, we look to create
a set of evaluation games that span a large range of com-
plexity and expressivity, but are still logically simple enough
for quick human understanding. Therefore, representing
the goals of the game in their disjunctive normal form, we
restrict the evaluation games to have at most three options
per goal, with each option composed of at most three predi-
cates, and a maximum of six unique predicates used across
all goals. Only two- and three-player games are considered
in the evaluation set. Additionally, we ensure the evalua-
tion set of games spans the range of competitiveness and
balance (defined in Section 3) – we create discrete buck-
ets in competitiveness-balance space, with some buckets
corresponding to the extreme values of these measures.
Evaluation games are sampled such that there is an equal
number of games per competitiveness-balance bucket, and
per competitiveness-balance bucket an equal number of
games across the different number of options and predi-
cates in the game. We also remove trivial games (i.e. where
^(g1) ∈ {0, 1}). The result is an evaluation set of games
which is uniform across balance buckets, competitiveness
buckets, number of options, and number of predicates.

Evaluation co-players Each evaluation task must include
policies to act as the co-players of the task, leaving a sin-
gle player slot available for evaluation of an agent in the
task. For the purposes of this work, we use a collection of
pretrained agents. These include a noop agent that always
emits the noop action (corresponding to not moving) and a
random agent that emits an action uniformly sampled from
the whole action space. In addition, we use agents trained
on simpler incarnations of the evaluation space, as well as
sub-spaces of evaluation space (e.g. an agent trained only
on single predicate games). These agents were generated
during earlier phases of the research project.

We combine the evaluation worlds, games, and co-players
to get test and validation sets. We first generate the test set
of evaluation tasks. Next the validation set of evaluation
tasks is generated in an identical manner, however explicitly
holding out all games and worlds within a certain distance
from the test set (Section A.3) and likewise holding out all
test set co-players except for the trivially generated noop
and random policies. In addition, all hand-authored tasks
(Section 4.3) are held out from all evaluation task sets. The
test task set consists 1678 world-game pairs played with
all 7 co-players for a total of 11746 tasks. The validation
task set consists of 2900 world-game pairs played with a
growing number of co-players: noop, random and an extra
player per previous generation of training.

4.3| Hand-authored Task Set

The evaluation set of tasks described previously covers a
diverse subspace of XLand, however the automatic gener-
ation of these tasks can make interpretation of successful
policies difficult – it can be hard to know what challenges
an individual task poses. We created a hand-authored set of
tasks which act as interpretable evaluation tasks. In addition,
many of these hand-authored evaluation tasks are out-of-
distribution or represent challenges that are extremely rare
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Figure 11 | Five examples of some of the 42 tasks in the hand-authored evaluation task set. A full list of hand-authored evaluation tasks is
given in Table 8.

to be seen in a sample from the evaluation set, and thus
further test ability of an agent to generalise. Examples of
the 42 tasks in the hand-authored task set can be found
in Figure 11 (full list is provided in Table 7), and include
well known tasks such as Capture the Flag, Hide and Seek,
and King of the Hill which have been projected into XLand
space. Other examples include physical challenges such as
Stop Rolling and Tool Use. The hand-authored task set is also
held out from all training.

5| Learning Process

We now turn our attention to the learning process. We seek
agents that are generally capable in the XLand space. As one
of the proxies to this goal, we want agents that can zero-shot
generalise to tasks from the test set, and use normalised
percentiles computed on the test set as the performance
metric to encapsulate this.
Our training process consists of three main components:

1. Deep RL to update the neural network of a single agent.
Deep RL optimises an agent to maximise expected re-
turn across a distribution of training tasks given.

2. Dynamic task generation with population based train-
ing to provide the distribution of training tasks for a pop-
ulation of agents. The task distributions are changed
throughout training and are themselves optimised to
improve the population’s normalised percentiles on the
validation set.

3. Generational training of populations of agents to chain
together multiple learning processes with different ob-
jectives. Agents are trained with different learning
objectives per generation, with each subsequent pop-
ulation bootstrapping behaviour off the previous gen-
eration of agents, to improve validation normalised
percentiles with each subsequent generation.

We will now describe these three components in more detail.

5.1| Deep Reinforcement Learning

An agent playing on an XLand task x takes in high-
dimensional observations oB at each timestep, and produce
a policy from which actions are sampled aB ∼ cB, allowing
the agent to maximise the collected reward on the task. We

use a neural network to parameterise the policy, and train
this network using the V-MPO RL algorithm (Song et al.,
2020). Similarly to the the original V-MPO implementation,
we use single-task PopArt normalisation of the value func-
tion (Hessel et al., 2019; van Hasselt et al., 2016). At each
weight update, the network parameterising c is updated in
the direction to maximise the expected discounted return
on the instantaneous task distribution Vc (Pc).

The per-timestep observation oB the neural network takes
as input consists of an RGB image from the agent player’s
point-of-view oRGBB , proprioception values corresponding to
the forces relating to the agent’s player holding an object
oprioB , as well as the goal g of the agent’s player in the task
x. A recurrent neural network processes this information to
produce a value prediction vB and policy cB, from which a
single action aB is sampled.

Goal attention network The recurrent neural network
incorporates an architecture that is tailored towards the
structure of V∗ the value of an optimal policy for a given
task. For simplicity let us write

V∗ (g) := max
c

Vc (g)

to denote the value of the optimal policy when we hold the
world, other goals, and co-players fixed.
Theorem 5.1 (Value Consistency). For a goal g :=∨9
==1 [

∧<=
2=1 q=2] we have

V∗ (g:) ≤ V∗ (g) ≤ V∗ (gC)

for g: := ∨9−1
==1

[∧<=
2=1 q=2

]
, gC := ∨9

==1
[∧<′=

2=1 q=2
]
where

<′= ≥ <=.

This property says that for each game we can easily con-
struct another game providing an upper or lower bound of
the optimal value, by either selecting a subset of options or a
superset of conjunctions. Therefore, with g := ĝ1 ∨ · · · ∨ ĝ<=
we have

V∗ (g) ≥
<=max
7=1

V∗ (ĝ7).

By putting ĝ0 := g we can consequently say that

V∗ (g) =
<=max
7=0

V∗ (ĝ7),
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Figure 12 | A schematic of the neural network used to parameterise the agent’s policy. The input observations oB consist of RGB images
and the proprioception, and the agent also receives its goal g. The agent processes the observations through the torso and a recurrent core
to produce hB , which is used for the predicate predictor, producing pB . The recurrent core output, the predicate predictor output, and the
goal is passed to the GOAT module. The GOAT module (see Section 5.1) attends to a specific part of the recurrent representation based on
the current goal of the agent, and performs logical analysis of the goal using value consistency (see Theorem 5.1). The goal embedding and
predicate predictor architectures are provided in Figure 38. Modules with the same names share weights (i.e. each value head, as well as
each GOAT unit).

the optimal value for g is the maximum of values of the
subgames consisting of each of the options ĝ7 and the full
goal g itself.
We encode this property explicitly in the neural network

architecture. At each timestamp, the agent produces an
internal hidden state embedding using the history of its
observations but no knowledge of the goal. Separately, the
goal is embedded and used as a query for an attention mech-
anism that produces a goal-attention hidden state ĥ[0]B . In
parallel, the agent produces analogous embeddings for each
option ĥ[7]B , and estimates the current value of each v̂ [7]B .
This asks the agent to predict what would be its expected
return if it was to focus on option 7 until the end of the episode,
v̂ [7]B . With the attention mechanism, the agent switches its
hidden state to another option’s hidden state if and only if
the value of said option was higher than its current estimate
of the value of the whole goal. This way the agent is inter-
nally encouraged to be consistent with the Value consistency
property of the game space.
More specifically, hB is the hidden state of an

LSTM (Hochreiter and Schmidhuber, 1997) that takes as
input the processed pixel and proprioception observations.
We attach an atomic predicate state predictor to the output
of the LSTM: this predictor is a simple multi-task binary clas-
sifier, outputting pB which predicts the dimensions of q(sB)
relevant for g, and is trained as an auxiliary classification

loss (i.e. only shaping the internal representations, without
explicitly affecting the policy (Jaderberg et al., 2017b)). The
goal attention (GOAT) module then follows:

GOAT(hB ,pB , g) :=
∑
7

�
U(v̂ [7] , {v̂ [ 8] }=

8=0)
�
ĥ[7]B

v̂ [7]B := 5V (ĥ
[7]
B ) ∀=

7=0
ĥ[7]B := GOATunit (hB ,pB , ĝ7) ∀=

7=0
GOATunit (h,p, g) := att(h, [p; 5G (g)]),

where att(·, ·) is an attention module (Bahdanau et al.,
2015), È·É denotes the stop gradient operation, mean-
ing ∇F ÈFÉ = 0, and U(0, �) is a weighting scheme, e.g.:
Uargmax (0, �) = 1 ⇐⇒ 0 = max{�}, or Usoftmax,Z (0, �) :=

exp(0//)∑
1∈� exp(1//) .

Given this parameterisation, we add corresponding con-
sistency losses:

�VB :=
(
Èv̂BÉ − v̂ [0]B

)2
�hB :=

(�
ĥB

�
− ĥ[0]B

)2
,

where ĥB := GOAT(hB ,pB , g), v̂B := 5V (ĥB), and 5G is the goal
embedding function (see Figure 38). These losses encour-
age the value predicted for the full goal g to not be smaller
than the value of any of the options ĝ7. A schematic view
of this process is provided in Figure 12 with the details of
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the goal embedding 5G and atomic predicate predictions
provided in Figure 38. Note, that these are all internal value
functions predictions that do not use any privileged informa-
tion. We observed that faster learning can be achieved if the
value function v used for RL itself does get access to extra
information (Vinyals et al., 2019) in the form of the reward
from the last step @B−1. We add a simple L2 loss to align
these two value heads in a co-distillation manner (Zhang
et al., 2018):

�align := ‖vB − v̂B ‖2.
We do not stop gradients through v meaning that the privi-
leged information value head v is penalised for expressing
quantities that the internal v̂ cannot model as well.

5.2| Dynamic Task Generation

Due to the vastness of task space, for any given agent, many
tasks will either be too easy or too hard to generate good
training signal. To tackle this, we allow the train task dis-
tribution to change throughout the learning process in re-
sponse to the policy of the agent itself. The agent’s neural
network is trained with RL on the instantaneous training
task distribution Pc (ℵ).

We operationalise Pc (ℵ) by using a filtering of a proposal
distribution using a simple set of tests evaluating tasks use-
fulness for the current stage of learning.

Proposal train tasks are generated in a similar manner to
the evaluation validation task set: worlds, games, and co-
players are generated as described in Section 4.2 ensuring no
collisions with the validation and test sets (Section A.3). We
establish a task’s usefulness by comparing the performance
of the agent to the performance of a control policy ccont.

The intuition of using a control policy is that the agent will
only train on a task if the agent’s returns are significantly
better than those of the control policy. This guarantees that
the agent is performing meaningful actions in the task that
affect the return. In practice, we set the control policy to
be a uniform random action policy. However, an interesting
alternative would be to set the policy to be the agent’s past
policy – this would let us determine whether the agent’s
policy has recently improved or worsened on this task.

A proposal task is accepted (used for training) if and only
if the following three criteria are met:

1. The agent has a low probability of scoring high on a
given task

Pr['c (x) > ;A] < ;solved.

2. The agent has a high probability of performing better
than the control policy

Pr['c (x) > 'ccont (x) + ;>] > ;>cont.

3. The control policy is not performing well
Vccont (x) < ;cont.

At a high level, the filtering of proposal tasks gives a
mechanism for removing tasks that are too-easy (crite-
rion 1), tasks that are too-hard (criterion 2), and tasks in

which the control policy is sufficient to achieve a satisfac-
tory score (criterion 3), based on the agent’s current be-
haviour at each point in training. All the above parameters
m = {;>, ;s, ;cont, ;>cont, ;solved} form agent-specific hy-
perparameters that define Pc (ℵ). We estimate the criteria
using Monte Carlo with 10 episode samples for each policy
involved.
For example, a control policy return threshold ;cont = 5

would disallow any training tasks where a control policy is
able to get a return of at least 5 (the reward is on a scale
of 0 to 900). When using a uniform-random policy over
actions as the control policy, this could be used to ensure
the training task distribution doesn’t contain tasks that are
very easy to get reward. The combination, for example, of
;> = 2 and ;>cont = 0.9 would only allow training tasks
where the agent achieves a return in all ten episode samples
of at least 2 reward more than the return achieved by the
control policy – this could ensure that the agent only trains
on tasks where its behaviour is already better than that of
the control policy. As a final example, the combination of
;s = 450 and ;solved = 0.1 would disallow training on
any task where the agent is able to achieve more than 450
reward on any of its episode samples – this could filter out
tasks where the agent is already performing well.
Whilst this filtering mechanism provides a way to supply

the agent with a dynamic training task distribution, the
filtering criterion itself may benefit from being dynamic.
What is considered too-hard or too-easy at the beginning of
training may encourage early learning, but cause saturation
or stalling of learning later in training. Due to the vastness
of the XLand task space we seek learning processes that
do not saturate, but rather dynamically shift to ensure the
agent never stops learning.

To address this, we incorporate population based training
(PBT) (Jaderberg et al., 2017a) which provides a mechanism
to dynamically change hyperparameters of the learning pro-
cess (Jaderberg et al., 2019). Rather than training a single
agent, we train a population of agents, each agent train-
ing on its own task distribution Pc9 (ℵ) that is controlled
by its own hyperparameters m9. Additionally, the learning
rate and V-MPO hyperparameter nU are added to the set of
hyperparameters modified by PBT.

PBT requires a fitness function to compare two agents and
propagate the preferred agent. We use the normalised per-
centiles on the validation set. Periodically during training,
agents are compared, and only if an agent Pareto domi-
nates another agent in normalised score across percentiles
it undergoes evolution – the dominant agent’s weights are
copied, its instantaneous task distribution copied, and the
hyperparameters copied and mutated, taking the place in
training of the non-dominant agent. More details can be
found in Section A.7.
This process constantly modifies the dynamic task gen-

eration process and agent population to drive iterative im-
provement in normalised percentiles.
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5.3| Generational training

With this combination of deep RL and dynamic task distri-
butions we hope to provide a training process to continually
improve agents in terms of their normalised percentiles as
measured on the validation task set. However, in practice,
the limitations of RL and neural network training dynamics
still pose a challenge in training agents on the XLand task
space from scratch.
It has been observed that higher performance and faster

training can be achieved in deep RL by first training an
agent, then subsequently training a new agent on the iden-
tical task whilst performing policy distillation from the
first agent (Czarnecki et al., 2019; Furlanello et al., 2018;
Schmitt et al., 2018). We employ this technique multiple
times on populations of agents: a population of agents is
trained, then a new generation of agents is trained distilling
from the best agent of the previous generation’s population,
with this process repeated multiple times. Each genera-
tion bootstraps its behaviour from the previous generation.
Furthermore, these previous generations also give us an
opportunity to increase our pool of co-player policies and
increase the diversity of our training experience, similarly to
the AlphaStar league (Vinyals et al., 2019). At each genera-
tion, our training procedure includes the best player from
each previous generation in this pool of players.

A final advantage of generational training of populations
is that the learning objectives and agent architecture can
vary generation-to-generation. We take advantage of this by
using self reward-play: an RL objective which encourages
exploration. In our training methodology, self reward-play is
utilised for the first few generations followed by the regular
RL objective in the later generations.

Self reward-play One of the central desires of a generally
capable agent is that the agent should catastrophically fail
on as few tasks as possible. To target this objective we
seek agents that minimise the smallest non-zero normalised
percentile – to obtain at least one timestep of reward in
as many tasks as possible, the problem of exploration. We
define participation as the percentage of tasks the agent
obtains a non-zero reward in.
To aid learning participation, we present challenges to

the agent that it is capable of satisfying by asking the agent
to revert a changes in the environment that the agent it-
self previously created. Self reward-play rewards the agent
for satisfying a goal g, and after succeeding the agent is
rewarded for fulfilling not(g) without resetting the environ-
ment, with this flip in goal repeating after each satisfaction.
This can be seen as an agent playing in a self-play compet-
itive manner against itself, where one player must satisfy
g and the other player must satisfy not(g), however the
players act sequentially, and are played by the same agent.

In practice, we implement this by using the reward @srpB :=
|@B − @B−1 | and setting the discount WB = 0 if @srpB > 0 (which
rewards the agent for minimising the time until the next
goal flip).
Empirically, we find that optimising for self reward-play

drastically improves exploration. The agent is encouraged
to interact with the world and to change its reward state,
after which it must change the state back again, and so
on. In comparison, when optimising the discounted sum of
environment reward, changing the environment yields the
risk of changing the (unobserved) environment reward from
1 to 0 which discourages the agent from interacting with
the environment. As a result, agents that optimise with self
reward-play achieve significantly higher participation in the
same amount of training time (see Section 6.2.2). However,
by construction, self reward-play does not optimise agents to
be competent (i.e. whilst the smallest non-zero normalised
score percentile is minimised, the normalised percentiles
remain low). We discuss in detail how self reward-play is
leveraged in Section 6.2.

Iterative normalised percentiles As discussed in Sec-
tion 4.2, the test set contains a fixed set of co-player policies
(used also to evaluate against). However, the validation
set does not contain these, but only the trivially generated
noop-action and random-action policies. For evaluation, co-
player policies are required to play validation tasks with,
and the normaliser score used by the normalised percentile
metric also uses this fixed set of co-player policies. The gen-
erational training process allows us to start only with the
trivially generated noop-action and random-action policies
and to iteratively refine the validation normalised percentiles
metric: each generation creates agents which are added to
the validation set and used to update the normalised per-
centile metric, with the next generation incorporating the
previous generation’s policies in its training, with this pro-
cess repeating, iteratively refining the normalised percentile
metric and expanding the set of co-player policies. This
means that the normalised percentiles metric on the vali-
dation set used to guide training changes each generation
as more policies are added to the validation co-player set.
Note that for all results reported in Section 6, we report the
normalised percentiles on the test set which is fixed, with
the same fixed set of co-player policies, for all generations.

5.4| Combined Learning Process

These three components of the training process – deep re-
inforcement learning, dynamic task generation, and gener-
ational training – are combined to create a single learning
process. The three pieces are hierarchically related. On the
smallest wall-clock timescale (seconds), deep RL provides
weight updates for the agents’ neural networks, iteratively
improving their performance on their task distributions. On
a larger timescale (hours), dynamic task generation and
population based training modulate the agents’ task distribu-
tions to iteratively improve the Pareto front of validation nor-
malised percentile scores. Finally, on the largest timescale
(days), generational training iteratively improves popula-
tion performance by bootstrapping off previous generations,
whilst also iteratively updating the validation normalised
percentile metric itself.
From the opposite perspective, the overall system con-

tinuously creates generations of agents seeking to improve
the validation normalised percentile metric – to gradually
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Figure 13 | The combined learning process. (Top) Generations of agents are trained, composed of populations of agents where the
best performing agents become distillation teachers of the next generation as well as co-players to train against. (Middle) Inside each
population, agents are trained with dynamic task generation that continuously adapts the distribution of training tasks Pc9 (ℵ) for eachagent c9, and population based training (PBT) modulates the generation process by trying to Pareto dominate other agents with respect
to the normalised percentiles metric. (Bottom) Each agent trains with deep reinforcement learning and consists of a neural network
producing the policy c and value function v.
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Figure 14 | Generations of performance as measured on the held out test task set. The first two generations focus on the maximisation of
participation using the self reward-play RL objective (Section 5.3). In between generations, the best agent wrt. the objective is selected and
used as a teacher and additional co-player to play against in further generations. Generations 3-5 focus on the improvement of normalised
percentiles, and use the raw reward for the RL algorithm. The dashed line in each plot corresponds to the performance of the teacher
from the previous generation. The co-players are the set of policies that populate the co-players in these multiplayer tasks, with this set
initialised to just the trivially created noop-action and random-action agents (white and grey circles).
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Figure 15 | (Top) On the left we see the learning surface, showing the progress of a generation 5 agent through time with respect to each
of the normalised percentiles. The surface shows the normalised score (height) for each percentile (depth) through training (x-axis).
Therefore, the flat bottom of the surface (zero height) is the part of the space where the agent is not participating. On the right, we see an
orthogonal projection onto the surface at the end of training. (Bottom) We highlight the performance on 6 hand-authored tasks at three
points in training, showing how improvements in the normalised percentiles correspond to improvement in these hand-authored tasks.

improve the coverage and competence on tasks. In order to
do so, a generation’s population is changing the distribution
of training tasks for each agent such that the agents keep im-
proving the Pareto front of validation normalised percentile
scores. The agents themselves are updating their neural
network weights with reinforcement learning based on the
stream of experience they generate from their training task
distributions, gradually improving their performance on this
shifting distribution. The whole process is summarised in
Figure 13.

The iterative nature of the combined learning system, with
the absence of a bounded metric being optimised, leads to a
potentially open-ended learning process for agents, limited
only by the expressivity of the environment space and the
agent’s neural network.

6| Results and Analysis

In this section, we show the results of training agents with
the learning process introduced in Section 5, with the spe-
cific experimental setup described in Section 6.1. The learn-
ing dynamics are explored in Section 6.2 with respect to
the evaluation metric defined in Section 4. In Section 6.3,

we analyse the zero-shot generalisation performance of the
trained agent across the test set. Section 6.4 delves into
some emergent agent behaviour that is observed on hand-
authored probe tasks. Moving beyond zero-shot behaviour,
in Section 6.5 we show the results of finetuning the trained
agents for wider transfer. Finally, in Section 6.6 we analyse
the representations formed by the agent’s neural network.
All the results reported in this section are computed on

tasks that were held-out of training.

6.1| Experimental Setup

More details on the architecture, hyperparameters, other
elements of the experimental setup are provided in Sec-
tion A.4, A.5, A.6, and A.7. Each agent is trained using 8
TPUv3s and consumes approximately 50,000 agent steps
(observations) per second.

6.2| Agent Training

We trained five generations of agents, varying the learning
setup with each generation. The results of this process is
shown in Figure 14. The learning process per generation is
described below.
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Figure 16 | Evolution of the training distribution of tasks due to dynamic task generation throughout 5 generations of agents (showing
values from one agent per population only). We characterise the the training distribution by five measures (from the top): competitiveness
(a property of games), number of options (a property of games), opponent strength (how performant the co-player in the task is), shortest
paths entropy (a property of the worlds), initial atom changes (a property of the tasks, how many atomic predicates must be changed
to satisfy an option). These change a lot throughout training, for example the strength of the opponents grows over time, generation 3
focuses more on worlds with larger shortest path entropy, and later generations focus on more competitive games.

The co-player set of policies were initialised with a noop
and a random policy. We used the generational mechanisms
described in Section 5.3. At the end of each generation,
we selected the best agent that was produced throughout
the generation. This agent was then used in three ways by
subsequent generations: 1) as a policy to use for distillation
in the next generation, 2) as an additional policy in the co-
player set of policies, and 3) as an additional player as part
of the computation of the validation normalised percentile
metric.
We varied the learning setup in the following way across

generations. In the first two generations, the agent was
trained with self reward-play to encourage exploration. In
these generations, the fitness used for PBT was the average
participation as measured on the validation task set. Sub-
sequent generations were trained without self reward-play
and used Pareto dominance over 10th, 20th and 50th per-
centiles of normalised score on the validation task set as PBT
fitness. When selecting the best agent for the next gener-
ation, the agent with the highest participation was chosen
in the first two generations, and the agent with the highest

10th percentile normalised score in subsequent generations.
After two generations of training, we obtained an agent

trained with self reward-play with a high test participa-
tion (91%) but low test 10th percentile and 50th percentile
normalised scores – 23% and 79% respectively. The gener-
ation 3 agents quickly outperformed these scores as they
did not use self reward-play and instead maximised true
reward. Our final agent in generation 5 reached 95% par-
ticipation (however it participates in 100% of tasks that
humans can, see details in Section 6.3.1), 82% 10th per-
centile, 112% 50th percentile (median normalised score) on
the test set, and 585 average return on the hand-authored
task set (which is provably at least 65% of the optimal policy
value), Figure 14 (right). The learning surface for the final
5th generation is shown in Figure 15.

6.2.1| Dynamic Task Generation Evolution

Figure 16 shows how various properties of our tasks change
throughout training as a result of the dynamic task genera-
tion (DTG).
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(a) Participation as we ablate away dynamic task
generation, the variable discount used in self
reward-play, and self reward-play altogether.

(b) The 10th percentile normalised score as we ab-
late away PBT, the GOAT architecture, and dynamic
task generation.

(c) The 10th percentile normalised score of the
fourth and fifth generation as we keep the fourth
generation running.

Figure 17 | Ablations of the training methods. In all plots, the curve designates the median agent performance in the population while the
shaded area shows the spread between the best and the worst agent.

We can see that for generation 3 and onward, DTG sig-
nificantly increases the average strength of the co-players
that the agent trains against. Similarly, there is an increase
in the competitiveness as well as a decrease in the number
of options of games presented to the agent for training. The
composition of these 3 factors – stronger opponents, more
competitive scenarios, and less options, creates a training
distribution of hard problems (since agents are forced to
compete with capable opponents). Similarly, the number of
initial atomic predicate changes needed gradually increases,
meaning that agents are increasingly placed in scenarios
where multiple predicate states must be changed from their
initial state to obtain reward.
All these changes are driven by the agent’s performance;

there is no direct control given to the agent to focus on any
of the above properties, and thus these dynamics are purely
emergent.

6.2.2| Ablation Studies

Our ablation studies evaluate the impact of different aspects
of our training methodology.

Early generations: self reward-play and dynamic task
generation. As discussed in Section 5.3, early training in
our environment is difficult. We use self reward-play to
encourage the agent to explore changing the environment
state, and dynamic task generation to avoid training on
tasks that are initially too hard for the agent and would
not provide any useful training signal. In this ablation, we
trained multiple agents from scratch with a diverse pool of
co-player policies. We show the participation of the differ-
ent trained agents in Figure 17a. Our full method, which
used both dynamic task generation and self reward-play,
reached a participation of 84% after 16 billion steps. We
see that removing in turn dynamic task generation, the use
of zero discounts on step changes (part of our self reward-
play procedure), and self reward-play resulted in significant
reductions in performance. When none of these methods
are used, the agent fails to learn any meaningful policy.

Later generations: Population based training, the GOAT
architecture and dynamic task generation. In our next
ablation, we consider a setup similar to the third generation
in our main experiments. The agents were not trained with
self reward-play, but during the first 4 billion steps have a
distillation loss towards the teacher policy of an agent that
was trained with self reward-play. The agents were trained
with a diverse pool of co-player policies. The results are
shown in Figure 17b. We trained each agent for 20 billion
steps. Similarly to our main experiments, our full method
uses PBT, the GOAT architecture and dynamic task gener-
ation. Our first ablation removes PBT from our method,
replacing it by a simple sweep across 8 agents, which leads
to a ∼ 20% reduction in performance of the best agent. Ad-
ditionally removing the GOAT architecture from our method
and replacing it with a simpler architecture similar to the
one used in Hessel et al. (2019) yields another ∼ 30% re-
duction in performance. Finally, removing dynamic task
generation from our method whilst keeping other aspects
constant leads to a ∼ 65% reduction in performance.

Generation based training. In our final ablation, we con-
sider the benefits of generation based training. We kept
the fourth generation of main experiments from Section 6.2
running in order to compare its performance to the fifth
generation. The results are shown in Figure 17c. We off-
set the fifth generation’s curve to the point the best agent
from the fourth generation was selected. We can see that
as training progresses the fifth generation outperforms the
previous generation (both in terms of comparing best agents
from corresponding populations, as well as comparing the
averages), even when generation 4 was trained for the same
amount of time.

6.3| Performance Analysis

Due to the vastness of task space, with unknown maximum
scores, there is no single notion of performance to report.
Consequently, we rely on relative performance analysis and
other qualitative notions of progress described below.
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Figure 18 | A visualisation of the test set of tasks, with the corresponding agent performance. The red colour corresponds to a low
normalised score and green to a high one. We identify four sources of games the agent scores 0 reward on (listed on the right): 1) tasks
that require the agent to put the opponent on a specific floor (marked as triangles in the galaxy); 2) tasks that require the agent to make
the co-player hold an object (marked as circles in the galaxy); 3) a single task (in red in the galaxy) which is impossible due to a very
rare physics simulation bug; 4) a single task (in orange in the galaxy) that requires the agent to put the co-player on a given floor by a
composition of two predicates. After removing these four types of tasks, which cannot be solved even by a human, our agents participate
in every test task.

6.3.1| Coverage

First, we focus our attention on answering the question are
there any test tasks, where the agent never reaches a rewarding
state? We identify that there are indeed a few percent of
this space where none of the agents ever score any points.
Further investigation shows that all these failed tasks involve
impossible challenges, requiring an agent to make the co-
player hold something (which, without the cooperation of
the opponent is impossible) or to place the co-player on a
specific floor (which, can also be impossible to achieve given
the physical simulation of the game). Furthermore, we
identify a single task, which, due to a very rare physics bug
is impossible to solve because the object of interest spawns
outside the reachable region. Figure 18 shows these games
in the XLand galaxy. After removing the impossible tasks
listed above our agent participates in every single test task,
thus suggesting they are indeed widely capable.

6.3.2| Relative Performance

We investigate various properties of the games, and how
they translate to the relative improvement of our agents
(using test normalised scores to measure this quantity). In
Figure 19 we can see that the overall normalised score of our
agent is higher on games which are more competitive, sug-
gesting that it is in these challenging competitive scenarios
our proposed learning process brings the biggest improve-
ment relative to the pretrained evaluation policies in the

test set. Similarly, high normalised score is correlated with a
large number of goal predicates (and thus a need to reason
about many relations at the same time) as well as high ini-
tial atom changes (the number of relations that need to be
changed, before an agent can get to a rewarding state). We
also observe the biggest improvements with fewer options –
games where there is just one option are much harder on a
purely navigational level, as an agent cannot choose what
to do, but rather is forced to satisfy a single option. Finally,
we also see a big improvement relative to the evaluation
policies when the agent is tasked with goals involving object-
object interactions, such as make the yellow sphere be near
the purple pyramid, as opposed to tasks related to the play-
ers themselves, e.g. hold a purple sphere. Overall, we see a
general trend of agents showing the greatest improvements
in the most challenging parts of our game space.

6.4| General Capabilities

We now provide an overview of some of the general capa-
bilities of the agent observed, allowing them to participate
in a variety of tasks, execute various behaviours, and show
satisfactory handling of new, unexpected situations.

Whilst the current instantiation of XLand is extremely vast,
one can easily hand-author tasks that could only extremely
rarely, or cannot at all, be generated during training due to
the constraints of our training task generation process. For
example we can place agents in worlds that lack ramps to
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Figure 19 | (Left) Box plots showing the distribution of normalised
scores for the final agent across various types of validation tasks.
Whiskers denote the minimum and maximum value, the notch
denotes the median, and the box area is between the 25th and
75th percentiles. The white square denotes average performance.
(Right) Normalised test percentiles for the corresponding subsets
of tasks.

challenge their ability to navigate, we can make them face
unseen co-players, and we can execute interventions mid-
episode. These probe tasks allow us to better understand
and clarify the limits of generality of our agents.

6.4.1| Hand-authored tasks

We now consider the qualitative behavioural properties of
our agents at different points throughout training on hand-
authored tasks (see Figure 11 for some some examples and
Table 7 & 8 for a list of all). We compare two agents on a
selection of the hand-authored task set: the final generation
4 (cG4) agent and the final generation 5 (cG5) agent. A
selection of videos of the generation 5 (cG5) agent can be
found in the supplementary results video here.

Capture the flag. In this two-player task, the agents’ goal
is to capture the cube in the opponent’s base and bring it
back to their own base. An agent gets a reward if the oppo-
nent’s cube touches the floor of their own base while their
own cube also touches the floor of their own base, with the
opponent having an equivalent goal with respect to its base
floor. Both agents are able to navigate to their opponent’s
base to capture their cube. However, cG4 often finds it diffi-
cult to find the way back to its own base. Furthermore, it
often gets tagged by the opponent, making it respawn at its
initial spawn location. cG5 on the other hand shows better
navigational skills and usually finds its way back to its base
after capturing the cube.

Hide and seek: hider. cG4 moves somewhat randomly
with abrupt changes in direction. This can make it hard
for the opponent to keep seeing it. cG5 on the other hand
moves very specifically away from the co-player and often
up the ramp and onto the side of the platform opposite the
co-player. This forces the co-player to go around the ramp.

Hide and seek: seeker. cG4 searches for the co-player
throughout the world and then stands still once the co-
player is in its vision. It does not anticipate the co-player’s
movement as it is about to come out of its vision. cG5 prefers
to continuously follow the co-player in order to be right next
to it. In this way, it rarely lets the co-player out of its vision.

King of the hill. In this two-player task, the agent gets a
reward if it is the only player at the top of the hill (touching
the white floor). Once they get to the top of the hill, both
cG4 and cG5 stay there and are able to push away the co-
player whenever it comes near. However, cG4 sometimes
fails to navigate to the top of the hill, getting stuck in a loop.
cG5 is more consistent in its navigational abilities to get to
the top of the hill.

XRPS Counter Yellow Sphere. In XRPS (Section 3.2.3),
the agent can get points for holding any sphere, as long
as its colour is not countered by the colour of the sphere
the opponent is holding. However, the opponent player is
goal-conditioned to hold the yellow sphere only. cG4 tends
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Figure 20 | (Top) From the left: rendering of the world; a goal composed of 3 options, each represented as a single predicate; Plots of
the internal value function predictions of the GOAT module, with the colours corresponding to specific options. (Middle) Call-outs of 5
situations, from the perspective of the agent. (Bottom) A Kohonen Network representing the activity of the GOAT module (Section 6.6).
The four coloured circles represent the Kohonen Neurons activity (from top): whether the agent is early in the episode (yellow), if it is
optimistic about future rewards (purple), if it thinks it is in a rewarding state (cyan), if it thinks multiple atoms are missing (orange). See
Figure 29 for more details.

to hold a sphere at random from the ones available. When
this happens to be the black sphere, it gets no reward due
to the co-player countering it with the yellow sphere. cG5
on the other hand notices the co-player holding the yellow
sphere and counters it by stealing the yellow sphere and
holding it itself. It succeeds at holding it while the co-player
tries to get it back. However, neither agent explicitly seeks to
hold the purple sphere which would counter the opponent
holding the yellow sphere.

Stop rolling. In this task, the agents have to keep a sphere
from rolling to the bottom of a slope. The agents only get a
reward if the sphere is not touching the bottom floor and is
not being held. cG4 simply lifts the sphere up in the air and
lets it drop, gaining rewards for the brief moments when the
sphere is dropping. cG5 throws the sphere up the slope and
then tries to block it from rolling down with its body. Often,
cG5 manages to corner the sphere between its body and the
wall as the sphere is on the slope and scores rewards for the
remainder of the episode without moving.

6.4.2| Behavioural case studies

Let us now focus on 3 specific case studies showing interest-
ing emergent behaviours.

On-the-fly option evaluation In Figure 20 we see an
agent trying to solve a task with a goal consisting of 3 possi-
ble options. Initially, the agent does not see a yellow sphere,
but it does see a black pyramid and the orange floor. Its
third option rewards the agent for placing the black pyra-
mid on the orange floor, and looking at the agent’s internal
option-values prediction, we see that indeed the value of
the whole goal v̂ [0]B (violet curve) is closest to the third op-
tion value v̂ [3]B (green curve). Around 2.5s into the episode,
the agent sees a yellow sphere, which leads to a dramatic
increase in its internal prediction of what would happen if
it was to satisfy option 1 instead (̂v [1]B , blue curve), which
rewards the agent for placing the black pyramid near the
yellow sphere. As a result, the internal value function of the
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Figure 21 | (Top) From the left: rendering of the world; a goal composed of one option; Plots of the internal value function prediction of
the agent. (Middle) Call-outs of 5 situations, from the perspective of the agent. (Bottom) A Kohonen Network representing the activity of
the GOAT module (Section 6.6). The four coloured circles represent the Kohonen Neurons activity (from top): whether the agent is early
in the episode (yellow), if it is optimistic about future rewards (purple), if it thinks it is in a rewarding state (cyan), if it thinks multiple
atoms are missing (orange). See Figure 29 for more details.

whole game switches to upper bound the first option, and
rather than navigating to the orange floor, the agent brings
the black pyramid next to the sphere. This case study exem-
plifies the internal reasoning of the GOAT module, hinting
at intentional decisions about which options to satisfy based
on the current state of the environment.

Tool use In Figure 21 we see an agent placed in a world,
where it needs to get near to a purple pyramid placed on a
higher floor. However, in this world there is no ramp lead-
ing to the upper floor – this initial lack of accessibility is
impossible to occur during training due to the procedural
world generation process constraints. We observe the agent
initially trying to move around the red block, looking for a
ramp. It starts to throw various objects around, which can
either be interpreted as looking for a ramp hidden under-
neath, or simply an emergent heuristic behaviour of trying
to increase the entropy of the environment in a situation
when the agent does not know what to do. Around 5 sec-
onds into the episode a slab thrown by an agent lands in

the position partially supported by the upper floor, and the
agent uses a freezing gadget to keep it in place. A moment
later the agent can see a target purple pyramid in front of it
with a frozen object looking like a ramp leading to the pur-
ple pyramid’s floor, and its internal value estimate rapidly
increases, suggesting that the agent understands that it has
found a solution to the task. The agent navigates onto the
frozen object and reaches its goal. We can see that the in-
ternal representation activity (described in Section 6.6) at
10 seconds is very similar to the final internal activity from
the previous case study – we recognise this visual pattern
as emerging when an agent is in a content state.

Experimentation Figure 22 is a final case study, where
an agent is placed in a big open room, with most of the
objects removed from the reachable space, and only 3 cubes
left. The task the agent is facing is to put the black cube
near the purple cube, the yellow cube near the purple cube,
without putting the black and yellow cubes near each other.
This simple logical puzzle requires an agent to figure out
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Figure 22 | (Top) From the left: rendering of the world; a goal composed of one options; Plots of the internal value function prediction of
the agent. (Middle) Call-outs of 5 situations, from the perspective of the agent. (Bottom) A Kohonen Network representing the activity of
the GOAT module (Section 6.6). The four coloured circles represent the Kohonen Neurons activity (from top): whether the agent is early
in the episode (yellow), if it is optimistic about future rewards (purple), if it thinks it is in a rewarding state (cyan), if it thinks multiple
atoms are missing (orange). See Figure 29 for more details.

that there is a spatial ordering that satisfies these principles:
a line with the yellow cube, followed by the purple cube,
followed by the black cube. Note, that whilst this does not
look like a complex problem on a predicate level, it is a very
hard exploration problem due to the physical instantiation
of XLand tasks – namely

#{s:@g (s)=1}
#{s:s∈S} �

#{q(s):@g (s)=1}
#q

.

From the agent’s behaviour and internal value we can hy-
pothesise that the agent is initially confused. It starts by
bringing the cubes together. Then at around 10 seconds
we can see it visually inspecting the scene with the yellow
and black cubes too close, after which it tries to reshuffle
them. This reshuffling process is repeated multiple times
for the next few dozen seconds, until eventually around 50
seconds into the episode, the agent stumbles upon a spatial
arrangement of the cubes that satisfies the goal, which the
agent again inspects visually. Whilst still clearly not content
when it comes looking at the agent’s internal state/value pre-
diction, the agent keeps the objects in the rewarding state

and stops shuffling the cubes. This within-episode experi-
mentation behaviour could be a general heuristic fallback
behaviour – when it lacks the ability to 0-shot generalise
through understanding, it plays with the objects, experi-
ments, and visually verifies if it solved the task – all of this
as an emergent behaviour, a potential consequence of an
open-ended learning process. Note, that agent does not
perceive the reward, it has to infer it purely based on the
observations.

6.4.3| Multi-agent

We now investigate some emergent multiplayer dynamics
between agents playing in specific probe games. We take
13 agent checkpoints through training of the final (5th) gen-
eration of our agent (checkpoint 1 is the earliest in training
through to checkpoint 13 which is the latest in training).
For each of the probe scenarios described below, we play
every single pair of checkpointed policies against each other.
This way we obtain 132 = 169 matchups, and evaluate each
pair of players on 1000 different worlds (to marginalise over
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Figure 23 | (Left) Payoffs for the game of Hide and Seek played by
checkpoints of the agent through training from start (1) to end (13),
marginalised across 1000 different worlds, from the perspective
of the seeker (top) and hider (bottom) player roles. (White is low,
colour is high). (Right) The evolution of the Nash equilibrium
distribution through training for each role of the player. One can
note the back-and-forth dynamic of the hider and seeker improving
over time. The agent never trained with these checkpoints.

physical instantiation), allowing us to study the develop-
ment of strategies, social behaviours and learning dynamics
of the agents in these games. Note, that the agent was
never trained against these checkpoints, the only co-players
it ever experienced during training were from the previous
generations. More details can be found in Section A.9.

Hide and Seek We revisit the game of hide and seek in
this new evaluation context. It is an asymmetric, imbal-
anced, fully competitive game. Figure 23 shows the results
of this experiment. With more training (later checkpoints),
the results show the agents keep improving in the execution
of both hider and seeker roles, showing a somewhat transi-
tive strength progression, without exhibiting forgetting that
can occur in multi-agent training (Czarnecki et al., 2020;
Vinyals et al., 2019), and the Nash equilibrium is mostly cen-
tered around the newest agents. We can also see that there
is a noticeable back-and-forth dynamic between the seeker
and hider strategy, as initially the Nash equilibrium for the
seeker stays at checkpoint 1 (early in training), whilst the
hider Nash equilibrium keeps moving to the newest check-
point. This suggests that the agent is gradually improving its
hiding strategy. Later, we see the opposite – the hider Nash
equilibrium stops moving, while the seeker Nash equilibrium
keeps improving, with this switch happening multiple times.
Note that this is being observed without the agents ever
training against each other, thus we hypothesise that these
developments have to be coming from agents acquiring new
behaviours and strategies in other parts of XLand task space.
In particular, it is worth noting that during training, whilst
the agent does not play against its checkpoints, and even
though the game of hide and seek itself is not a part of the
training space, agents are facing games where their goal
is to “see the other player”, but the other player’s goal will
be something else. Consequently, even though they only
train against a few instances of other agents, the space of
behaviours they can encounter is enormous because these
agents are themselves conditioned on a variety of goals.

Figure 24 | (Left) Probabilities of each agent choosing to avoid
conflict and the corresponding normalised scores, as a function of
their total training time (1 meaning least trained, and 13 meaning
the most trained). (White is low probability, black is high probabil-
ity). (Right) Fraction of conflict avoiding behaviours (solid curve)
and the corresponding normalised score (dashed curve). The agent
becomes more conflict avoiding over time whilst preserving its per-
formance when matched with a copy of itself (red curve), while the
earlier agent playing against later agents is not avoiding conflict
and its performance also keeps decreasing (blue curve).

Conflict Avoidance We hypothesise that as training pro-
gresses agents might develop the behaviour of avoiding
conflict with other agents in the situations where there is an
alternative non-conflicting option to be satisfied. We create a
simple game, where an agent can choose to place one of two
spheres on a specific floor, while the other agent wants to put
one of these spheres on a different floor. With both spheres
being equidistant from a target floor, the only reason to pick
the non-conflicting sphere is in order to avoid conflict with
the other agent. In Figure 24 we can see that as the agent
trains, it exhibits more and more conflict-avoiding behaviour,
even though on average this does not necessarily lead to
an increase in return on this particular task. However, em-
pirically when early not-conflict-avoiding checkpoints play
with increasingly trained checkpoints, they achieve a de-
creasing amount of reward. Note, that the agents are not
training against each other, meaning that this development
in behavioural response is purely an effect of the dynamic
training distribution encountered during the open-ended
learning process.

Chicken Game In this experiment, we create an XLand
version of a game-theoretic social dilemma called Chicken. In
this setup, each agent can choose to either cooperate with its
co-player or to try to dominate it. We observe two interesting
trends with respect to the tendency to seek cooperative
solutions in Figure 25. First, if an agent is playing with a
checkpoint from very early in training, it tends to dominate
it more. On the other hand, when playing with a copy of
itself (self-play) its tendency to collaborate increases over
training time. One simple explanation of this phenomenon
is that for cooperation to work, both sides need to be capable
of doing so. Consequently, it is perhaps harder to cooperate
with a less capable agent. However, once facing someone of
exactly same strength (self-play) the collaborative solution
becomes preferred.
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Figure 25 | (Left) Probabilities of each agent choosing to collaborate
or dominate, as a function of their total training time (1 meaning
least trained, and 13 meaning the most trained). (White is low
probability, black is high probability). (Right) Fraction of collabo-
rative behaviours in a Chicken-like game through agent training.
The agent becomes more collaborative over time when matched
with a copy of itself (red curve), and dominates more with earlier
versions of itself (blue curve).

Figure 26 | Performance of the agent in 0-shot generalisation ex-
periments where the goal of the agent is changed in the middle of
an episode. Note that agents never perceived dynamically set goals
during training.

6.4.4| Goal Interventions

During training our agents always received a single goal
throughout an episode, the same goal at every timestep. We
study whether the agent is able to adapt on-the-fly if this
property is broken, and the goal changes mid-way through
a single episode.
We sample 500 tasks all consisting of single option, one

predicate games from the test set. We run the agent for an
extended episode of 3/2 length of a regular episode, where
in the first 1/3 the agent is given one goal (where we ignore
its performance), and then we change the goal supplied to
the agent to a different one. To simplify the setting, the
co-players use the noop-policy, simulating a single-player
game.
In Figure 26 we compare the normalised score of the

agent evaluated in this scenario with the agent playing the
same game but whose internal state is reset when the goal
changes to simulate starting the episode from scratch with
a fixed goal. We also show the performance of the agent
taking random actions for reference. We notice that the
performance of the agent with the changed goal is almost
exactly the same as with a fixed goal, showing robustness
to goal changes.

6.4.5| Failed Hand-authored Tasks

Whilst there are many tasks the agent participates in, there
are also some hand-authored tasks the agent does not, never
achieving a single reward. Some examples are:

Gap tasks Similar to the task in Figure 21, in this task
there is an unreachable object which the agent is tasked with
being near. The object is unreachable due to the existence
of a chasm between the agent and object, with no escape
route (once agent falls in the chasm, it is stuck). This task
requires the agent to build a ramp to navigate over to reach
the object. It is worth noting that during training no such
inescapable regions exist. Our agents fall into the chasm,
and as a result get trapped. It suggests that agents assume
that they cannot get trapped.

Multiple ramp-building tasks Whilst some tasks do show
successful ramp building (Figure 21), some hand-authored
tasks require multiple ramps to be built to navigate up mul-
tiple floors which are inaccessible. In these tasks the agent
fails.

Following task One hand-authored task is designed such
that the co-player’s goal is to be near the agent, whilst the
agent’s goal is to place the opponent on a specific floor. This
is very similar to the test tasks that are impossible even for
a human, however in this task the co-player policy acts in a
way which follows the agent’s player. The agent fails to lead
the co-player to the target floor, lacking the theory-of-mind
to manipulate the co-player’s movements. Since an agent
does not perceive the goal of the co-player, the only way
to succeed in this task would be to experiment with the
co-player’s behaviour, which our agent does not do.

6.5| Finetuning for Transfer

Throughout this section we have so far demonstrated zero-
shot generalisation to new tasks. The breadth of coverage
of the agent’s behaviour suggests that whilst zero-shot per-
formance can be achieved on many out-of-distribution test
tasks, there is the potential for very quick adaptation with
finetuning.

Using a simple training setup – without PBT, dynamic task
generation, or any other hyperparameter tuning – we fine-
tune the weights of the generally capable agent previously
analysed for 100 million steps (approximately 30 minutes
of training) on a number of tasks from the hand-authored
set. The results are shown in Figure 27.
The results show in all cases an increase in reward

achieved by the finetuned agent compared to the zero-shot
performance, with the finetuned agent showing a drastic
improvement of 340% on average. By construction, the max-
imum reward that could ever be achieved on an XLand task
of 900 timesteps is V∗ (x) ≤ 900. Using 900 as an upper
bound of optimal reward per task (which is a very loose
one, since even an optimal policy needs some time to reach
objects of interest etc.), learning from scratch scores at least
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Figure 27 | Comparison of three agents from different training regimes on a range of hand-authored levels. Scratch: An agent trained
from scratch for 100 million steps. Zero-shot: the agent trained using our methodology and evaluated on these held out levels zero-shot.
Fine-tuned: the same agent but trained for an additional 100 million steps on the level. 100 million steps is equivalent to 30 minutes of
wall-clock time in our setup. This rapid finetuning improves the agent score significantly compared to zero-shot, and in the majority of
cases training from scratch does not achieve any reward.

9% of the performance of the optimal policy, zero-shot per-
formance is at the level of 39% and the finetuned agent
achieves 77%. With the same computational budget and
30 minutes of training, learning from scratch on these tasks
fails in the majority of tasks.
The task Make Follow Easy is described in the previous

section as one of the tasks the agent fails to zero-shot gen-
eralise to. With 30 minutes of finetuning, the agent is able
to achieve reward consistently in this task, learning success-
fully to coax the co-player to the target floor.

These experiments show the potential of massively multi-
task RL pre-training, as is performed in this work, for the
subsequent transfer with finetuning to many different down-
stream target tasks.

6.6| Representation analysis

We now move our attention towards understanding how
agents operate and the way they represent the simulated
environment.

Kohonen Network There are a multitude of methods to
analyse the internal representations of agents and under-
standwhat knowledge is encoded in neuron activations (Goh
et al., 2021) applicable in various situations. We utilise Ko-
honen Networks (also known as Self-Organising Maps) (Ko-
honen, 1982) to investigate the high dimensional represen-
tations learned by our agents. This technique unifies three
types of analysis, allowing us to:

• visualise the space of internal representations wrt.
some labelling (often done with T-SNE (Van der Maaten
and Hinton, 2008)),

• visualise the current state of the agent (i.e. a single hB)
(previously done, for example, with a Neural Response
Map (Jaderberg et al., 2019)),

• conduct simple concept decoding tests (often done with
linear classifier probes (Alain and Bengio, 2017) or
single neuron activity analysis (Quiroga et al., 2005)).

A Kohonen Network is a collection of  neurons h7 ∈
ℌ := ℝ< trained to represent a dataset composed of points
F 8 ∈ ℝ< under some notion of distance (here we use stan-
dard Euclidean distance), using a pre-determined structure
between the neurons that prescribe the geometry one is
looking for in the dataset. In our work we use neurons ar-
ranged as a grid filling a 2-dimensional circle, giving each
neuron a fixed position k7 ∈ K := ℝ2. To train the network,
we iteratively minimise the following per iteration loss using
gradient descent

�ℌ (h) :=
∑
7, 8

max
{
0, dmax

dmax−‖k7−k](F 8 ) ‖

}
‖F 8 − h7‖2

](F) := arg min
8
‖F − h 8‖2.

Intuitively, for each point in the dataset, the closest Koho-
nen Neuron is selected (the winning neuron) and moves the
neuron a bit closer to this data point, together with other
neurons that are nearby in grid K space, with their adapta-
tion downscaled proportionally to how far away from the
winning neuron they are. By fitting the Kohonen Network
to the data in this manner, we are asking what 2d circle-like
shape can fit into the n-dimensional dataset in such a way
that its position corresponds to the density of the data? More
details can be found in Section A.11.

We gather 30k episodes of our trained agent across tasks
sampled uniformly from the test set, and use activations F 8 of
the outputs of the LSTM, goal embedding module, and GOAT
module to train three Kohonen Networks respectively. Next,
we identified a collection of binary properties corresponding
to state s 8 represented in these episodes, e.g. whether it is
early in the episode, whether the agent is holding an object,
whether the agent is in a rewarding state, etc. For each
probe property > we assign a colour to a specific Kohonen
Neuron h7 given by the fraction of data points containing
the property relative to all the states that were mapped to
this neuron:

2>7 := #{F 8:7=](F 8)∧>(s 8) }
#{F 8:7=](F 8) } .

In Figure 28 one can see qualitatively that different proper-
ties are clearly represented in different parts of the network.
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Figure 28 | Internal representation analysis of the agent. We use Kohonen Network representations of various properties for three different
modules of the agent (LSTM, goal embedding, GOAT). Within a Kohonen Network, the bright yellow colour denotes states where the
property is true, and blue where it is false. We shade out plots which represent combinations of properties and modules where the given
property is not represented in a statistically significant manner by the output of the module (see Section 6.6).

To quantify this, we compute the Balanced Accuracy (BAC) of
a classifier which assigns a label to each state by a majority
vote of labels inside each cluster (i.e. set of points mapped
onto a given neuron), formally:

>̂Tmodule (F) := 2>](F) ≥ Tmodule

for some threshold Tmodule ∈ [0, 1], and we compute

BAC( >̂, >) := max
T

1
2

[ TP[ >̂T,>]
TP[ >̂T,>]+FN[ >̂T,>] +

TN[ >̂T,>]
TN[ >̂T,>]+FP[ >̂T,>]

]
,

where TP,TN, FP, FN is the fraction of true positives, true
negatives, false positives and false negatives from a predictor
>̂ and the ground truth >. We decide that the information is
present in a specific representation if and only if BAC( >̂, >) ≥
0.8, meaning that if we were to randomly select a state
where the property is true or false, we could with at least
80% probability correctly guess this label based purely on
the colour of the corresponding Kohonen Neuron.

Using this quantitative measure of information present in
Figure 28, we can first see that the notion of the flow of time,
and whether an agent is holding an object is clearly visible
in the LSTM cell output, but is completely missing from
the goal embedding module. It is however preserved at the
output of the GOAT module, meaning that this information
is probably useful for further policy/value predictions.
We can also see that the agent clearly internally repre-

sents that it is in a rewarding state. This is significant given
that the agent does not receive its reward, nor the past re-
wards, as an input. The reward signal is used purely as part
of RL training, so during inference the agent needs to be
able to infer this information from its observations. Conse-
quently, this implies that the agent is capable of using its
RGB input to reason about the relations between objects,
and their correspondence to the logical structure of the goal
at hand. We further investigate whether this representation
of a rewarding state is consistent with the agent’s internal
atomic predicate prediction (denoted in Figure 28 as re-
warding state and knows it), where we further require all

the atomic predicate predictions that are relevant to the
rewarding state (i.e. selected option) to be correct. We
can see that this information is also very well represented.
On the other hand, if we ask whether the agent represents
the atomic predicates states of all relations involved in the
goal (i.e. the atomic predicate states contributing to other
options, that agent might not be pursuing right now) we
see this information is not present in any of the modules
we investigated. This suggests that agent has a very good,
but focused, understanding of the state of the world, and
attends mainly to the aspects of state that are relevant to
the option it is currently following.
We can ask an analogous question of whether the agent

is aware of how many atomic predicates states it needs to
change before it can obtain a reward. The distinction be-
tween having to flip one atomic predicate or more is clearly
encoded in the goal embedding module – with a small island
of activations in the upper right corner corresponding to
multiple missing atomic predicates, with the smooth big
region around it corresponds to needing to flip exactly one.
While this information is clearly preserved in the GOAT mod-
ule output, we can see that they are mapped onto similar
regions, suggesting that as the information is processed
through the network and reaches the point where only poli-
cy/value needs to be produced, this distinction is potentially
less relevant.
Finally, details regarding the exact game that an agent

is playing (e.g. number of options involved) is clearly rep-
resented in its goal embedding module, but is then not
propagated to the GOAT module, suggesting that whatever
decision needs to be made that affects the policy/value can
be done solely at the goal embedding level, and does not
need to be integrated with the LSTM output.

Kohonen Neurons An associated question that one could
ask is whether there exists a single Kohonen Neuron cod-
ing for a specific property. Note that a Kohonen Neuron
does not correspond to a single neuron in a neural network
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Figure 29 | Internal representation analysis of the agent. The Koho-
nen Neurons encode four well represented concepts from Figure 28.
The kernel density estimation plots represent the density of the
activity of the neuron when the concept is true (in colour) or false
(in gray).

of the agent, but rather a collection of them, found using
unsupervised training (and thus more related to general
notions of distributed sparse representations than so called
grandmother cells Connor (2005)). This can be seen more
as a distributed concept, though not simply a linear classifier
probe (Alain and Bengio, 2017), as the Kohonen Neuron is
found without access to the corresponding labels.

>̄7Tneuron (F) := 2>7 ≥ Tneuron,

and
BAC( >̄, >) := max

7,T
1
2

[ TP[ >̄7T,>]
TP[ >̄7T,>]+FN[ >̄7T,>] +

TN[ >̄7T,>]
TN[ >̄7T,>]+FP[ >̄7T,>]

]
.

We note that for being early in the episode, having a high
baseline, being in a rewarding state, and for multiple missing
atomic predicates, we can identify corresponding Kohonen
Neurons achieving BAC of over 75%, Figure 29.

Value consistency In Section 5.1 we discussed value con-
sistency, the fact that an optimal policy value of the game
composed of multiple alternatives is always lower bounded
by the maximum value of the optimal policy for each sep-
arate option. Whilst the agent is encouraged to preserve
a similar property over its current policy, it is not fully en-
forced. We investigate how consistent the trained agent
is in this respect by looking at its internal values for each
option and computing Pr

[
v̂ [0]B ≥ max7>0 v̂

[7]
B

]
. In Figure 30

we show the density estimation of episodes where a spe-
cific probability of value consistency occurs. In expectation,
our agent is value consistent around 90% of the time (for
the goals with more than one option, since by definition
an agent is always value consistent with one option goals).
Value consistency is clearly shown in a previously discussed
example, Figure 20, with the value of the full game up-
per bounding values of the individual options, even as the
individual option values fluctuate.

7| Related Work

This work builds heavily upon the ideas of many related
works. We now review some of these in the areas of multi-

Figure 30 | The kernel density estimation of the fraction of frames
inside a single episode where the agent’s internal value estimation
of the whole goal is lower bounded by the maximum value over
options (value consistency, Theorem 5.1). We only consider goals
with two and three options, as this property is trivially true for one
option goals.

agent learning and progressive learning, iterative improve-
ment and percentiles, procedural environment generation,
curriculum over tasks, curriculum over goals, and world-
agent co-evolution.

Multi-agent and progressive learning. Our environment
is multi-agent, and as such we face challenges of multi-
agent learning systems, characterised previously as non-
stationarity, exploration, and interaction modelling (Bowl-
ing, 2000; Lowe et al., 2017; Mahajan et al., 2019). Like
others, we also see multi-agent reinforcement learning as
a potential solution to other challenges, such as the design
of autocurricula (Leibo et al., 2019) or even end-to-end
learning of pixel-perception based agents (Jaderberg et al.,
2019). The notion of generations of agents, forming a grow-
ing set (or league in Vinyals et al. (2019)) of agents lies
at the core of many multi-agent learning algorithms (Bal-
duzzi et al., 2019; Lanctot et al., 2017). The difference
in this work is the utilisation of the generational split to
encapsulate self-contained units of reinforcement learning
such that the objective can change between generations, as
well as the utilisation of a massive space of games being
solved in parallel. This progressive growing of the set of
agents on multi-task spaces is also related to progressive
learning (Furlanello et al., 2018; Rusu et al., 2016; Schwarz
et al., 2018), as well as multi-task learning with knowledge
sharing (Teh et al., 2017). Sessa et al. (2020) proposes a
mathematical framework of contextual games, which could
be used to view XLand goal conditioned agents. They show
an effective sampling strategy of scheduling games under
an assumption of smoothness of mapping from contexts to
optimal policies. From a formal standpoint the goal space of
XLand forms a Boolean algebra and thus can benefit from
exploitation of this structure (Nangue Tasse et al., 2020;
Todorov, 2009; Van Niekerk et al., 2019). Currently, we
exploit these properties in our GOAT module, as well as how
we navigate game space to create games with specific prop-
erties. Vezhnevets et al. (2020) studies architectures and
auxiliary losses (Jaderberg et al., 2017b) in a multi-agent
setting with hindsight knowledge of agents’ goals, which
could be applied to our setting. Leibo et al. (2017) studies
sequential social dilemma, in particular trying to identify
well known social dilemma classes (Robinson and Goforth,
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2005) in empirical payoffs emerging from RL simulations,
which our multi-agent analysis draws upon. Automated
identification of varied social dilemma in our setup is an
interesting open research question.

Iterative improvement and percentiles. Iterative no-
tions of improvements have been used, particularly in multi-
agent systems, either explicitly by targeting the goal with re-
spect to known opponents (Balduzzi et al., 2019; McMahan
et al., 2003), implicitly by using internal ranking between
agents (Jaderberg et al., 2019), or simply because of the
reliance on self-play (Silver et al., 2016). In this work we
use similar ideas but applied to worlds and games in addi-
tion to other agents (co-players), and propose a way to deal
with non-comparable reward scales of the resulting tasks.
When thinking about general capability and catastrophic
failure of policies, the field of robust and risk sensitive rein-
forcement learning (Borkar and Jain, 2010; Prashanth and
Ghavamzadeh, 2013; Tamar et al., 2012) has been analysing
variability in obtained rewards to find safer solutions. In
particular, percentile-based measures have been utilised (De-
lage and Mannor, 2010; Filar et al., 1995) to ensure/target
specific guarantees of a probability of obtaining a reward
in a given task. In this work we use similar ideas on the
level of distribution over tasks, rather than on the level of
individual policy outcomes. The use of curves of normalised
score with respect to percentiles to visualise and charac-
terise performance is inspired by ROC curves (Hanley and
McNeil, 1982).

Procedural environment generation. Many previous
works have used procedural generation and evolution to
create interesting environments for players (both agents
and humans). Togelius and Schmidhuber (2008) propose
an evolving system to generate interesting rules for a game
by selecting games in which random agents score poorly and
trained agents score highly. Volz et al. (2018) use a Genera-
tive Adversarial Network (GAN, Goodfellow et al. (2014)) to
generate Super Mario Bros levels. They further search the
latent space of the GAN using evolutionary methods to dis-
cover levels that are difficult but achievable for a previously
trained agent. Justesen et al. (2018) train an agent in a
procedurally generated environment and update a difficulty
parameter based on the agent’s recent success rate – we
make use of similar measures to influence task generation
in our work. Grbic et al. (2020) evolve Minecraft levels,
both via interactive and automated evolution. CPPN2GAN
(Schrum et al., 2020) generates large diverse game levels
by combining GANs, Content producing Compositional Pat-
tern Producing Networks (CPPNs, (Stanley, 2007a)) and the
NEAT evolutionary algorithm (Stanley and Miikkulainen,
2002). The GAN is first trained on a dataset of existing levels
to reproduce individual rooms. A CPPN is then evolved to
transform grid’s coordinate locations into a latent represen-
tation that can be input to the GAN. The CPPN is evolved
to maximise metrics such as the length of the shortest path
to solve a level. In PCGRL (Khalifa et al., 2020), a deep RL
agent is made to edit worlds in order to maximise a bespoke
reward function, such as generating long paths for a maze.

Curriculum over tasks. Both our procedures for world-
agent co-evolution (Section A.1.1) and dynamic task gener-
ation are examples of automated curriculum learning (ACL,
Portelas et al. (2020b)). In ACL, the training distribution of
the agent is automatically adapted throughout training. A
number of methods attempt to use learning progress (Ka-
plan and Oudeyer, 2007; Schmidhuber, 2010) on a task as a
way to decide whether the task should be trained on or not
(Graves et al., 2017). In the context of reinforcement learn-
ing, this has been used to select tasks or task parameters
(Kanitscheider et al., 2021; Matiisen et al., 2020; Portelas
et al., 2020a). OpenAI et al. (2019) automatically adapt
the parameters of their environment for solving a Rubik’s
cube with a robot hand. They start with an narrow domain
distribution and continuously expand this distribution when
the agent is seen to have good performance at its bound-
aries. Prioritised Experience Replay (Schaul et al., 2016)
changes the distribution with which experience is replayed
by prioritising those with high Temporal Difference (TD)
error. Similarly, Jiang et al. (2020) propose Prioritised Level
Replay which samples new levels to play on based on the
observed TD error in recent experience on those levels. In
CARML, Jabri et al. (2019) adapt the task distribution to
form a curriculum for meta-RL by maximising the informa-
tion between a latent task variable and their corresponding
trajectories. In PowerPlay, Schmidhuber (2013) propose a
framework to continuously seek the simplest unsolved chal-
lenge to train on. The adaptation of curricula for many of
these works use hand-crafted heuristics, as we do with dy-
namic task generation, however in our case the parameters
of the heuristic itself are adapted with PBT.

Curriculum over goals. A large body of work is concerned
with the training of goal-conditioned agents (Schaul et al.,
2015) in a single environment. In these past works, the
goal usually consists of the position of the agent or a target
observation to reach, however some previous work uses text
goals (Colas et al., 2020) for the agent similarly to this work.
When the goal is a target observation, most methods acquire
new goals by sampling observations previously generated in
the environment: Nair et al. (2018) generate visual goals by
training a Variational Auto-Encoder (Kingma and Welling,
2014) over the generated experience. Hindsight Experience
Replay (HER, Andrychowicz et al. (2017)) trains a goal-
conditioned agent by replaying trajectories with the agent
conditioned on the goal that was achieved in the trajectory.
Fang et al. (2019) add a curriculum to Hindsight Experience
Replay by dynamically changing the selection of trajecto-
ries for replay. Pong et al. (2020) propose a method to
increase the importance of rarely sampled observation as
goals. Warde-Farley et al. (2019) propose a variety of goal
achievement reward functions which measure how similar
a state is to the goal state. Racanière et al. (2020) perform
a curriculum over environment goals in randomly initialised
2D and 3D worlds. A setter generates goals for a solver
agent. The setter minimises a few different losses which
aim to yield a wide variety of tasks of various difficulties for
the current agent policy. CURIOUS (Colas et al., 2019) sets
a curriculum over environment goals by prioritising goal
spaces which have shown recent learning progress and then
sampling goals uniformly over goal spaces.
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Florensa et al. (2018) propose an adversarial goal gen-
eration procedure in which a goal-GAN generates goals for
locomotion tasks that the agent must solve. The objective of
the goal setter is similar to that used in our world-agent co-
evolution procedure: guarantee that the success probability
is within a preset range. Zhang et al. (2020) choose goals
where there is high epistemic uncertainty on the Q-function.
AMIGo (Campero et al., 2021) also generates a curriculum
of goals for the agent but does so by looking at the current
number of steps needed by the agent to reach the goal.

In Asymmetric self-play (OpenAI et al., 2021; Sukhbaatar
et al., 2018), two agents interact in turn in the environment:
Alice and Bob. Alice first plays in the environment and
generates a trajectory. From there, Bob can either be tasked
with returning the player to its original location, or, in a
new episode, reaching the same state that Alice achieved.
The self reward-play modification (Section 5.3) can be seen
as a sequential version of this within a single episode and
the same agent playing both Alice and Bob.

World-agent co-evolution. Our procedure for world-
agent co-evolution (Section A.1.1) shares similarity with
POET (Wang et al., 2019, 2020) and PAIRED (Dennis et al.,
2020). In all cases, the procedure generates a dynamic
high-dimensional world distribution for agents. In POET, a
population of environment-agent pairs is evolved through
time. Agents are continuously trained on their paired en-
vironment. Occasionally, agents are transferred to other
environments in the population. In PAIRED, two agents are
coevolved: a protagonist agent and an antagonist agent.
The protagonist agent attempts to solve tasks generated by
the antagonist agent. The antagonist also plays in the gen-
erated environments. The difference between the average
score of the protagonist and the best score of the antagonist
across multiple trials is defined as the regret. The protago-
nist is trained to minimise this regret while the antagonist is
trained to maximise it. Compared with both these methods,
our proposed procedure is simpler: it only requires a single
agent to be trained to solve tasks. We filter levels only based
on the agent’s estimated probability of success. Finally, the
use of the world-agent co-evolution process to create the
base distribution for training and evaluation for the remain-
der of our learning process is an example of AI-generating
algorithms (Clune, 2019).

8| Conclusions

In this work, we introduced an open-ended 3D simulated en-
vironment space for training and evaluating artificial agents.
We showed that this environment space, XLand, spans a
vast, diverse, and smooth task space, being composed of
procedurally generated worlds and multiplayer games. We
looked to create agents that are generally capable in this
environment space – agents which do not catastrophically
fail, are competent on many tasks, and exhibit broad ability
rather than narrow expertise. An iteratively revised metric
of normalised score percentiles on an evaluation set of tasks
was used to characterise general capability, and a learning
process to drive iterative improvement created. This learn-
ing process is composed of agents training with deep RL, on

training task distributions that are dynamically generated
in response to the agent’s behaviour. Populations of agents
are trained sequentially, with each generation of agents
distilling from the best agent in the previous generation,
iteratively improving the frontier of normalised score per-
centiles, whilst redefining the metric itself – an open-ended
learning process.
Combining this environment space with such a learning

process resulted in agents that appear to have broad ability
across our held-out evaluation space, catastrophically failing
on only a small percentage of tasks that are humanly im-
possible. We qualitatively and quantitatively characterised
some of the emergent behaviours of this agent and saw
general behavioural heuristics such as experimentation and
success recognition, and the tendency to cooperate more
with other competent agents, behaviours which appear to
generalise to many out-of-distribution probe tasks. These
behaviours are driven by rich internal representations that
we analysed, showing clear representations of the structure
and state of the goals they are tasked to follow.
These results hint at the ability to train agents, without

human demonstrations, which exhibit general capabilities
across vast task spaces. Beyond zero-shot generalisation,
the ability to quickly finetune these pretrained agents on
complex out-of-distribution tasks was demonstrated clearly.
We hope the presented methods and results pave the way
for future work on creating ever more adaptive agents that
are able to transfer to ever more complex tasks.
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Figure 31 | Worlds can be generated conditioned on an existing
world. This allows smooth variation of worlds. This figures shows
three examples of this process, with each column showing an initial
seed world and the rows showing two steps of conditional world
generation.

A| Appendix

A.1| Worlds

A.1.1| Procedural World Generation

Figure 32 gives an overview of the generation process which
we now describe in more detail for each of the components.

Topology Tile assignments are procedurally generated us-
ing the Wave Function Collapse algorithm (WFC) (Gumin,
2016). WFC acts as a constraint satisfaction algorithm, act-
ing on a set of tiles which correspond to 3D geometry such
as floor elements of different heights, ramps, and diagonal
floor pieces with associated connectivity rules. WFC itera-
tively samples a grid location, samples a tile to be assigned
to that location, and then updates each remaining grid loca-
tions’ probability distribution over what tiles can be sampled
given the constraints defined by tile connectivity rules. This
process repeats, and ends when all grid locations have an
assigned tile. The largest connected component of exposed
floor is defined as the playable area of the world. Finally, a
random scaling of the three dimensions of the tile elements
is performed to create non-cuboidal tile elements, and ran-
dom lighting applied (location, direction, intensity, hue).
We additionally randomly apply reflections of topology to
sometimes create symmetric worlds. The result is the ability
to procedurally generate a wide variety of convex topologies
composed of varied yet coherent structures.

Objects An object’s initial position in the world is deter-
mined by sampling from a 2D probability map corresponding
to the top-down map of the world topology, with non-zero
values in the playable area of the world, and subsequently
positioning the object in 3D at the floor level at the sampled
2D point. The probability map is given by a fixed parame-
ter Compositional Pattern-Producing Network (CPPN) (Ha,
2016; Stanley, 2007b) which takes in the 2D position, height,
and tile identity at each position in the map, and a position-
independent latent variable associated with the instance of
the object. This allows the probability of object placement to
be associated with certain floors, elements of the topology,
absolute or relative locations, in a highly non-linear manner
determined by the latent variable. Object instances have a
randomly sampled size, a colour, and a shape. There are
three colours – black, purple, yellow – and four shapes –
cube, sphere, pyramid, slab. Object locations can be sam-
pled independently as per the process previously described,
or in spatial groups clustered by shape or colour.

Conditional world generation The mechanisms de-
scribed so far allow us to create a world generating func-
tion, where each world sample is drawn independently
w ∼ %W (·). However, it is also possible to condition the
world sampling such that a new world ŵ ∼ %W (w) is simi-
lar to a given world w. To achieve this for the topology, we
can bias the initial probability over each grid location by
the delta function of the conditioned worlds topology. For
the object and player locations we add Gaussian noise to
the latent variable associated with each object and player,
and for all other categorically sampled quantities we resam-
ple. Some examples of this process is shown in Figure 31.
We show in Section 3.1 that this results in the ability to
smoothly vary worlds and can be used to generate worlds
via an evolutionary process.

Game conditioned worlds We can also condition the gen-
eration of worlds such that a particular game G is achievable
given the topology and layout of objects. We define a func-
tion wG = 5 (w,G) which takes an existing world w and a
game G and returns a new world wG such that all players,
objects, and topological elements (e.g. floors) referenced in
the game will be present and exposed in the playable area.

World-agent co-evolution Whilst our procedural world
generation function %W (·) has a vast and diverse support,
it is interesting to consider how to shift the distribution
towards more interesting worlds, particularly those that
may pose navigational challenges to players. To explore
this, we created an RL training process to train an agent
to maximise reward on a dynamic set of worlds, but with
a static game which always consist of a single player (the
agent) with the goal “Be near a yellow cube”. Our procedure
maintains two sets of worlds which dynamically change as
the agent trains: the train set and the evaluate set. When the
agent requests a world to train on, we sample one uniformly
from the train set.
The train set initially contains only a world consisting

of an open room (Figure 33 (left)) and the evaluate set
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Figure 32 | The steps of procedural world generation. The process is conditioned on a seed and optionally an existing world to be similar to.
Wave Function Collapse (Gumin, 2016) acting on a tileset of primitive building blocks creates a height map of the topology. Additionally,
for each object and player, a CPPN (Ha, 2016; Stanley, 2007b) creates a probability map for the entity’s initial spawn location. These
elements are combined in the Unity game engine to produce the playable world.

is set to be empty. An evolutionary algorithm governs
the progression of the train worlds similarly to criterion
co-evolution (Brant and Stanley, 2017). At regular inter-
vals, our procedure attempts to generate a new world to
add to the train set. It selects a random world from the
existing train set. It then mutates this world using the
conditional world generation process described previously,
wchild ∼ %W (wparent). This new world is added into the
evaluate set. To evaluate a world in the evaluate set, we
make the agent play in the world for 100 episodes. None of
these episodes are used for RL training. If the agent scores
a reward in at least one episode but less than half of the 100
episodes, the corresponding world is added to the train set.
For each world in the train set, we also monitor the agent
scores across the last 100 episodes and discard the world if
the agent does not still meet this criterion.
The agent is therefore continually training on worlds

which pose some navigational challenge, though not too
challenging. Since the fitness of worlds is related to the
agent’s behaviour, as the agent trains and improves in its
navigational behaviour, we observe the complexity of the
worlds in the train set continually increases. Figure 33 (mid-
dle) illustrates the train set of this process as both the agent
and the train world distribution co-evolve. We can see in
Figure 33 (right) how these worlds exhibit some interesting
features such as long navigational paths, forks in paths that
can be taken, thin paths such that the agent easily fall off,
and hidden goal objects.

A.1.2| Counting worlds

We would like to count how many E × ℎ worlds are there,
such that there exists a region � with the following proper-
ties:

• its size is at least Eℎ
2 .

• for every two points in � there exists a path between

them.
• there is no path that leads from � outside (and thus

there are no irreversible decisions of leaving the region).

Due to the complexity of this task, we provide a lower and
upper bound rather than the exact number of worlds. The
upper bound is trivial: we have 6 possible flat tiles (one
per level), 4 possible orientations of ramps and 4 possible
orientations of "diagonal tile". Consequently, we have at
most 6E·ℎ · (1 + 4 + 4)E·ℎ such worlds. We now turn our
attention to a lower bound. Let us take a world and focus on
every other tile (and thus operate on the dE2 e × d ℎ2 e subgrid,
w′, see Figure 34). We argue that if after assigning floor
levels to each point in this subgrid the resulting graph �w′
has a single strongly connected component (SCC), then
there exists at least one world in the full grid that satisfies
the desiderata. Because the graph is strongly connected
(has one SCC) this means that there is a path between every
two points, and naturally there is no path leaving this world.
However this world is at most 1/4th of the size of thew, thus
we embed it in our bigger world, by filling in the missing
tiles. For every edge of �w′ that is bidirectional we put a
corresponding ramp (purple in Figure 34), if the edge is
one directional we fill it with a flat tile at the height of
maximum of neighbouring heights (teal in Figure 34). We
fill the remaining 1/4th of tiles with the highest floor (red in
Figure 34). We treat w′, together with tiles that we added
in place of edges (as well as potentially some of the highest
floors if they are accessible) as our region �. This � is at least
of size 75% of w. Every pair of points has a path between
them, since by construction there is a path in w′, and the
tiles we added do not form any dead ends. In particular if
any of the highest floors become accessible, the player can
always jump down from it to a neighbouring tile of lower
height. Consequently there are no paths leaving �.
To compute the exact number we take number of all

possible w′ which is 6
Eℎ
4 and then estimate the probability
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Figure 33 | The process of world-agent co-evolution resulting in complex worlds. (Left) The initial seed world to the train world set. The
agent is trained to maximise the reward of its goal “Be near a yellow pyramid”. (Middle) The progression of the worlds in the train set
as training progresses. Worlds undergo evolution with a minimum criterion fitness such that a world must be solved sometimes but not
too often by the agent. (Right) The resulting world set is more diverse in terms of the navigational feature space and exhibit interesting
topological elements.

Figure 34 | Visualisation of the process used to estimate the number
of correct worlds of a given size. Cyan lines represent one directional
edges, while purple ones bidirectional. In the exemplary instance,
filled tiles have colours corresponding to the edges they replaced,
and in red we we see "pillars" used to fill in missing pieces.

of such a world forming exactly one SCC by Monte Carlo
sampling with 200,000 worlds (Table 1). For simplicity we
also put < = E = ℎ. Additionally, if E (ℎ) is even, then
there is a final column (row) at the edge of the world that
is less constrained with respect to our desiderata: for each
of ℎ

2 (E2 ) tiles we can fill in the neighbouring tiles by either
the neighbour value, or a 1-off version. This leads to an
additional factor of 2E+ℎ.

A.1.3| Worlds linear projection

In order to find a linear projection of the world space that
visualises some property of interest ℎ· (w) : W → ℝ+ we

< d <2 e Prob[#SCC(w′) = 1]
1 1 = 100%
2 1 = 100%
3 2 ≈ 16%
4 2 ≈ 16%
5 3 ≈ 3%
6 3 ≈ 3%
7 4 ≈ 0.5%
8 4 ≈ 0.5%
9 5 ≈ 0.07%
10 5 ≈ 0.07%
11 6 ≈ 0.005%
12 6 ≈ 0.005%
13 7 ≈ 0.0006%
14 7 ≈ 0.0006%

Table 1 | Monte Carlo estimations of the fraction of worlds
with a single connected component as a function of the
world size < (so the world is < × < tiles). We use 200,000
samples.

define a simple objective:

�smooth (\) :=
∑
w

‖ 〈̂g(w), \W〉︸       ︷︷       ︸
projection

− \b‖2 − (ℎ· (w)︸︷︷︸
target

− \2)
2
.

and find a projection \ = (\W, \b, \2) through gradient de-
scent with learning rate 0.1 trained for 30,000 iterations. We
denote by ĝ a vectorised version of the topology projection
g. For flat tiles, g simply assigns the normalised floor level
(e.g. for a tile B9 at level 9 ∈ {0, . . . , 5} we have g(B9) = 1

5 9),
and for simplicity ramps are assigned a half a floor value, i.e.
for a ramp B1↔2 between floor 1 and 2 g(B1↔2) = 1

5 · 1.5.

42



Open-Ended Learning Leads to Generally Capable Agents

Figure 35 | Linear projections \w found from the process of linearly
embedding world topologies. The first two columns represent the
2 projection dimensions, and the following two columns simply
show only the sign of each entry to emphasise the pattern. We can
see a checkerboard like structure being discovered which naturally
translates to navigational complexity/distribution of shortest paths.
Dotted lines show the effective size of the learnable parameters,
with remaining ones emerging from learning in the space invariant
to symmetries.

Intuitively, we seek a linear projection \W ∈ ℝE·ℎ×2 in the
space ĝ(W) ⊂ ℝE·ℎ such that the distance from some point
\b ∈ ℝ2 in the embedding space corresponds to the distance
between the target property and some arbitrary learned bias
\2 ∈ ℝ. This can naturally lead to finding projections where
the property of interest shows circular like placement (since
we use Euclidean distance from a point as a predictor), but
of course can also look more linear, if \b is placed very far
away from the projection of the data.
For our analysis we used ℎd(w) := H2 (d(w)) and

ℎdsp (w) := H2 (dsp (w)) (note that entropy is always posi-
tive and thus satisfies the assumptions).
In order to avoid spurious results coming from a rich pa-

rameter space (81) compared to number of samples (around
250) we exploit the fact that each of ℎ· is invariant to rota-
tions and symmetries, and learn a projection that is invari-
ant to them too. To achieve this we simply parametrise \w
(which is itself a 9 by 9 world) to be an average of all 8 ro-
tations/symmetries. Thanks to that, we reduce the number
of actual trainable weights in the linear projection from 81
to 15, significantly reducing overfitting.
We can see templates found in Figure 35, where one

can notice checkerboard like patterns being learned. To
some extent this is a world-topology navigational complexity
analogue to edge detectors from computer vision.

A.2| Games

The following technical details of game space describe our
current instance of XLand. Nothing in the system is con-
strained to using only the following relations, predicates,
number of players, options etc. and can easily be expanded
to cover an even richer space.

A.2.1| Relations

near(a,b). Is true if object a is at most 1 meter away
from object b (for reference a player’s avatar is 1.65m tall).

Figure 36 | The distributions of competitiveness and balance of
games created by different sampling mechanisms. (left) We uni-
formly sample matrices and attach random relations for 1000 games
with 1, 2 and 3 options, and see that extreme values are never
sampled, and there is a huge correlation between balance and com-
petitiveness, e.g. leading to no fully balanced and fully competitive
games. (right) After using our local search procedure to seek values
of 1∗, 2∗ in various ranges (rectangular areas with dotted lines) we
easily populate each entry including the extreme values.

In order to measure this we first calculate the center of
mass of each object, and find the point on an object that is
closest to the center of mass of the other. We find a mid-
point between these two points on objects surfaces. We
compute closest points on the surfaces of the objects to this
midpoint, and measure the distance between them. This
construction is relatively cheap to compute, and takes into
consideration the size of the object (as in we do not merely
measure distance between centers of mass, but actual body
of the object).

see(a,b). If a is not a player, then it is evaluated by
drawing a line connecting centers of masses of both objects
and checking if it is unobstructed. If a is a player then it
evaluates to true if and only if b would render in the field
of view of a.

on(a,b). This relation can only be used on a floor and a
player/object. It evaluates to true if and only if the given
player/object a is in contact with the upper surface of the
given floor colour b.

hold(a,b). This relation can only be used on a player
and object. It evaluates to true if a player is holding a specific
object with its beam. Note that it is technically possible for
two agents to hold the same object at the same time.

A.2.2| Atomic predicates

XLand currently consists of every possible instantiation of
the above 4 relations between 9 objects (3 colours – pur-
ple, black and yellow – and 3 shapes – pyramid, cube and
sphere), 2 player references (me, opponent) and 5 floor
colours. This leads to 212 unique atomic predicates listed
in Table 2 after taking into account logical symmetry, such
as g := near(a,b) ≡ near(b,a) =: g′ in the sense that
@g = @g′ . Similarly see is symmetric if both arguments are
objects (since objects have no orientation), but is not sym-
metric if at least one player is involved (since they have a
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directional vision).

A.2.3| Generating games

A naive way of generating a game could involve sampling
a set of 6 atomic predicates, and then sampling a random
matrix {−1, 0, 1}3×6 where rows are options, each made up
of conjunctions of predicates, with at most 3 non zero en-
tries per row. However, as seen in Figure 36 this creates an
extremely non-uniform distribution with respect to balance/-
competitiveness. In fact it is almost impossible to randomly
sample a fully competitive game.
Consequently we rely on a local search methodology of

game generation (see Figure 37). In order to generate a
game with a given number of options, conjunctions and
target balance 1∗, and competitiveness 2∗:

• We sample a random game matrix with a specified
number of options and conjunctions

• We sample 3 unique atomic predicates q1, q2, q3 , and
then sample recolouring b and put q4 := b(q1), q5 :=
b(q2), q6 := b(q3).

• If some predicates are identical then we keep resam-
pling b. This always terminates as there always exists a
recolouring that creates 3 new predicates.

• We combine matrix and predicates to get G
• We compute 1 := bal(G) 2 := comp(G)
• For a fixed number of iterations, or until 1 = 1∗ ∧ 2 = 2∗

we:
– Define improvement imp(g′) := min{|1 − 1∗ | −
|bal(g′) − 1∗ |, |2 − 2∗ | − |comp(g′) − 2∗ |}

– We randomly select a goal g from G = (g, g′)
– We perform a local modification of the goal by try-
ing to change matrix representation of this goal:
· Flip one of the 1s to -1s or vice verse
· Add 1 or -1 in a random option (if it would not
invalidate the limit of max 3 conjunctions)
· Remove 1 or -1 in a random option (if it would
not zero out the option)
· Copy an option from g′
· Copy an option from g′ and negate it (multi-
ply by -1)

– For each of such modifications g′′ we first verify
that the game is not trivial, and that no 2 options
are repeated, and then compute imp(g′′).

– If at least one modification led to non-negative
improvement (g∗), we pick the highest one and
construct corresponding G = (g′, g∗), recompute
1 and 2 and go to the next iteration.

– If all improvement were negative we terminate.

The whole process is repeated 10 times and the best game
selected (in terms of distance to 1∗, 2∗). Of course this pro-
cess does not guarantee convergence to the exact value of
1∗ and 2∗, in particular some are impossible – for example,
there is no 1 option, 1 predicate game of competitiveness
0.25 and balance 0.75. Since generating a game with given
properties is expensive, we also utilise the ability to create
multiple games with the same characteristics described in
the next section.

A.2.4| Creating alike games

Given a game G it is very easy to create another game of
exactly the same number of options, conjunctions, and same
balance and competitiveness. We randomly choose one of
the bijective recolourings b of objects, e.g.

b(black sphere) :=black sphere
b(purple sphere) :=yellow sphere
b(yellow sphere) :=purple sphere
b(black pyramid) :=black pyramid

b(purple pyramid) :=purple pyramid
b(yellow pyramid) :=yellow pyramid

b(black cube) :=yellow cube
b(purple cube) :=purple cube
b(yellow cube) :=black cube

and return b(G). It is easy to verify that comp(G) =

comp(b(G)) (since competitiveness does not depend on se-
mantincs of predicates) and also bal(G) = bal(b(G)), since
because b ∈ Ξ is a bijection, there also exists b−1 ∈ Ξ thus

bal(b(G)) = max
b′∈Ξ

coop(b′(b(G))) ≥ coop(b−1 (b(G))) = bal(G).

And at the same time

bal(G) = max
b′∈Ξ

coop(b′(G)) ≥ coop(b(G)) = bal(b(G)).

consequently
bal(G) = bal(b(G)).

Unfortunately, this process does not guarantee that b(G) ≠
G as the recolouring might not affect the game, or might
just happen to recolour symmetric parts of the game. In
practise, we repeat this process until a new game is found,
and terminate it after 100 unsuccessful tries (e.g. note that
the game of hide and seek will never produce any new games
with this method as it does not contain any objects).

A.2.5| Generation of a 3 player game

For simplicity, 3 player games are generated in the following
way:

• We take a 2 player game (g1, g2)
• We create g3 by randomly mixing options from g1 and

g2, and negate every predicate in a given option with
50% too.

• We randomly permute agents (and corresponding
goals).

A.2.6| PCA projection

In order to obtain a PCA over the game space, we note that

‖G7 − G 8‖2G = 1
4<2 ·#2

q

(G7)ג‖ − G)ג 8)‖2

= 1
4<2 ·#2

q

[
2‖(G7)ג‖ + G)ג‖ 8)‖2 − ,(G7)ג〉2 G)ג 8)〉

]
,

where (g)ג is a mapping that outputs a vector of length #q,
where 7th dimension equals 1 if 7th valuation of predicates
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hold(me,black cube) hold(me,black pyramid) hold(me,black sphere) hold(me,purple cube)

hold(me,purple pyramid) hold(me,purple sphere) hold(me,yellow cube) hold(me,yellow pyramid)

hold(me,yellow sphere) hold(opponent,black cube) hold(opponent,black pyramid) hold(opponent,black sphere)

hold(opponent,purple cube) hold(opponent,purple pyramid) hold(opponent,purple sphere) hold(opponent,yellow cube)

hold(opponent,yellow pyramid) hold(opponent,yellow sphere) near(black cube,black pyramid) near(black cube,black sphere)

near(black cube,me) near(black cube,opponent) near(black cube,purple cube) near(black cube,purple pyramid)

near(black cube,purple sphere) near(black cube,yellow cube) near(black cube,yellow pyramid) near(black cube,yellow sphere)

near(black pyramid,black sphere) near(black pyramid,me) near(black pyramid,opponent) near(black pyramid,purple cube)

near(black pyramid,purple pyramid) near(black pyramid,purple sphere) near(black pyramid,yellow cube) near(black pyramid,yellow pyramid)

near(black pyramid,yellow sphere) near(black sphere,me) near(black sphere,opponent) near(black sphere,purple cube)

near(black sphere,purple pyramid) near(black sphere,purple sphere) near(black sphere,yellow cube) near(black sphere,yellow pyramid)

near(black sphere,yellow sphere) near(me,purple cube) near(me,purple pyramid) near(me,purple sphere)

near(me,yellow cube) near(me,yellow pyramid) near(me,yellow sphere) near(opponent,purple cube)

near(opponent,purple pyramid) near(opponent,purple sphere) near(opponent,yellow cube) near(opponent,yellow pyramid)

near(opponent,yellow sphere) near(purple cube,purple pyramid) near(purple cube,purple sphere) near(purple cube,yellow cube)

near(purple cube,yellow pyramid) near(purple cube,yellow sphere) near(purple pyramid,purple sphere) near(purple pyramid,yellow cube)

near(purple pyramid,yellow pyramid) near(purple pyramid,yellow sphere) near(purple sphere,yellow cube) near(purple sphere,yellow pyramid)

near(purple sphere,yellow sphere) near(yellow cube,yellow pyramid) near(yellow cube,yellow sphere) near(yellow pyramid,yellow sphere)

see(black cube,black pyramid) see(black cube,black sphere) see(black cube,me) see(black cube,opponent)

see(black cube,purple cube) see(black cube,purple pyramid) see(black cube,purple sphere) see(black cube,yellow cube)

see(black cube,yellow pyramid) see(black cube,yellow sphere) see(black pyramid,black sphere) see(black pyramid,me)

see(black pyramid,opponent) see(black pyramid,purple cube) see(black pyramid,purple pyramid) see(black pyramid,purple sphere)

see(black pyramid,yellow cube) see(black pyramid,yellow pyramid) see(black pyramid,yellow sphere) see(black sphere,me)

see(black sphere,opponent) see(black sphere,purple cube) see(black sphere,purple pyramid) see(black sphere,purple sphere)

see(black sphere,yellow cube) see(black sphere,yellow pyramid) see(black sphere,yellow sphere) see(me,black cube)

see(me,black pyramid) see(me,black sphere) see(me,opponent) see(me,purple cube)

see(me,purple pyramid) see(me,purple sphere) see(me,yellow cube) see(me,yellow pyramid)

see(me,yellow sphere) see(opponent,black cube) see(opponent,black pyramid) see(opponent,black sphere)

see(opponent,me) see(opponent,purple cube) see(opponent,purple pyramid) see(opponent,purple sphere)

see(opponent,yellow cube) see(opponent,yellow pyramid) see(opponent,yellow sphere) see(purple cube,me)

see(purple cube,opponent) see(purple cube,purple pyramid) see(purple cube,purple sphere) see(purple cube,yellow cube)

see(purple cube,yellow pyramid) see(purple cube,yellow sphere) see(purple pyramid,me) see(purple pyramid,opponent)

see(purple pyramid,purple sphere) see(purple pyramid,yellow cube) see(purple pyramid,yellow pyramid) see(purple pyramid,yellow sphere)

see(purple sphere,me) see(purple sphere,opponent) see(purple sphere,yellow cube) see(purple sphere,yellow pyramid)

see(purple sphere,yellow sphere) see(yellow cube,me) see(yellow cube,opponent) see(yellow cube,yellow pyramid)

see(yellow cube,yellow sphere) see(yellow pyramid,me) see(yellow pyramid,opponent) see(yellow pyramid,yellow sphere)

see(yellow sphere,me) see(yellow sphere,opponent) on(black cube,brown floor) on(black cube,olive floor)

on(black cube,orange floor) on(black cube,blue floor) on(black cube,grey floor) on(black cube,white floor)

on(black pyramid,brown floor) on(black pyramid,olive floor) on(black pyramid,orange floor) on(black pyramid,blue floor)

on(black pyramid,grey floor) on(black pyramid,white floor) on(black sphere,brown floor) on(black sphere,olive floor)

on(black sphere,orange floor) on(black sphere,blue floor) on(black sphere,grey floor) on(black sphere,white floor)

on(me,brown floor) on(me,olive floor) on(me,orange floor) on(me,blue floor)

on(me,grey floor) on(me,white floor) on(brown floor,opponent) on(brown floor,purple cube)

on(brown floor,purple pyramid) on(brown floor,purple sphere) on(brown floor,yellow cube) on(brown floor,yellow pyramid)

on(brown floor,yellow sphere) on(olive floor,opponent) on(olive floor,purple cube) on(olive floor,purple pyramid)

on(olive floor,purple sphere) on(olive floor,yellow cube) on(olive floor,yellow pyramid) on(olive floor,yellow sphere)

on(opponent,orange floor) on(opponent,blue floor) on(opponent,grey floor) on(opponent,white floor)

on(orange floor,purple cube) on(orange floor,purple pyramid) on(orange floor,purple sphere) on(orange floor,yellow cube)

on(orange floor,yellow pyramid) on(orange floor,yellow sphere) on(purple cube,blue floor) on(purple cube,grey floor)

on(purple cube,white floor) on(purple pyramid,blue floor) on(purple pyramid,grey floor) on(purple pyramid,white floor)

on(purple sphere,blue floor) on(purple sphere,grey floor) on(purple sphere,white floor) on(blue floor,yellow cube)

on(blue floor,yellow pyramid) on(blue floor,yellow sphere) on(grey floor,yellow cube) on(grey floor,yellow pyramid)

on(grey floor,yellow sphere) on(white floor,yellow cube) on(white floor,yellow pyramid) on(white floor,yellow sphere)

Table 2 | List of all atomic predicates used in the current iteration of XLand. It consists of 212 elements that relate 2 players,
9 movable objects and 5 floors through use of 4 relations. The slab object is never used in atomic predicates.
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Figure 37 | The process of generating of a game with target properties. We see the matrix representation, as well as relations. Greedy local
search performs simple modifications to the game matrix, as described in Section A.2.

is rewarding under g, and -1 otherwise, and (G)ג : G →
{−1, 1}<·#q is simply concatenation of (g)ג over goals of
the game. With this construction, the norm of each vector
is constant 2‖(·)ג‖ = < · #q and thus we can compute a
kernel-ג (Scholkopf, 2001):

Kג (G7,G 8) ∝ −‖G7 − G 8‖2G

This way we can utilise any kernelised method (such as
Kernel PCA (Schölkopf et al., 1998)) to analyse the Game
Space without explicitly forming exponentially large (G)ג
space (which in our case has over 6 · 1065 dimensions) and
see linear structures in the space in which ‖ · ‖G is just the
Euclidean distance.

A.3| Holding out tasks from training

In order to create hold-out games we simply create a single
set of unique games (in the sense that no two games G ≡ G′
even under any recolouring b), split them between test and
validation. Training games generated are online rejected
if there is any collision (including under recolouring) with
test or validation.
For hold-out worlds similarly a set of unique worlds was

created (Section 4.2) and split between test and validation.
Training worlds generated are online rejected if there is any
collision with test or validation.
Finally, validation and test task sets are composed by

random matching of corresponding world and games. This
means that there is no game, nor world (and consequently
no task) shared between the two sets or encountered during
dynamic training task generation.

A.4| Reinforcement Learning

We use V-MPO (Song et al., 2020) with hyperparameters
provided in Table 3. We use a batch size of 64 and unroll
length 80.

Name Value Evolved with PBT
discount (W) 0.99 no
learning rate 1e-4 yes
baseline cost 1 no

target update period 50 no
nU 0.01252 yes

ntemp 0.1 no
init U 5 no

init temp 1 no
top k fraction 0.5 no

;> 7.5 yes
;A 375 yes

;cont 0 yes
;>cont 0 yes
;solved 1 yes

Table 3 | V-MPO and DTG hyperparameters. The hyperpa-
rameters that have "yes" in the last column are adjusted
using PBT (see Section A.7).

A.5| Distillation

We follow on-policy distill (Czarnecki et al., 2020), which
for a teacher cteacher and student c defines the per timestep
B auxiliary loss

�distill
B := KL

[�
cteacher
B

�cB] .
In order to further exploit the fact that our goal is not to
replicate the teacher but rather use to bootstrap from and
provide assistance with exploration, we mask this loss over
states when the reward is obtained. In other words, we
distill on a timestep if and only if an agent is coming from a
non-rewarding state, thus defining exploration distillation
loss

�
exp−distill
B := (1 − @B−1) · �distill

B .
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Name Type Description
ACCELERATION ℝ3 Acceleration in each of 3 axes.

RGB [0, 255]72×96×3 Pixel observations in RGB space with 72 by 96 pixel resolution.
HAND IS HOLDING {0, 1} Flag whether an item is held.
HAND DISTANCE ℝ A distance to a held object if one is held.

HAND FORCE ℝ A force applied to an item held by an agent.
LAST ACTION (aB−1,7)10

7=1 A 10-hot encoding of the previously executed action.
GOAL MATRIX {−1, 0, 1}6×6 a matrix encoding a goal in DNF form.
GOAL ATOMS ℕ6×6 a matrix encoding corresponding atoms from the goal, provided as categoricals.

Table 4 | List of all observations an agent receives as part of o7B := ( 57 (sB), g7). Note, that this does not contain a reward, as
the agent policy c does not have access to this information, only the value head does during training.

Name Possible values Description
MOVE FORWARD BACK {−1, 0, 1} Whether to apply forward/backward or no movement.
MOVE LEFT RIGHT {−1,−0.05, 0, 0.05, 1} Strafing.
LOOK LEFT RIGHT {−1,−0.2,−0.05, 0, 0.05, 0.2, 1} Left/right rotation.

LOOK UP DOWN {−1,−0.03, 0, 0.03, 1} Up/down rotation.
GRAB {0, 1} Grab an object.

USE GADGET {0, 1} Use currently equipped gadget.

Table 5 | The structure of the decomposed action space, consisting of 6 dimensions of discrete actions. Every combination of
the values is feasible, leading to 2100 possible actions.

Note we have binary 0 or 1 rewards @B−1 only in this work.
An agent uses a weight of 4 of this loss for the first 4 billion
steps in every generation apart from the first generation
(since there is no initial teacher), and the weight changes
to 0 afterwards.

A.6| Network architecture

Unless otherwise specified, every MLP uses the ReLU acti-
vation function. We use Sonnet (DeepMind, 2020) imple-
mentations of all neural network modules, and consequently
follow Sonnet default initialisation schemes as well.

Torso. An RGB observation (see Table 4 for details) is
passed to a ResNet (He et al., 2016) torso with [16, 32, 32]
channels, each consisting of 2 blocks and output size of 256.
Max pooling is used, as well as scalar residual multiplier.
Torso produces ôB.

Goal embedding. The goal embedding network is pre-
sented in Figure 38. The predicate embedding network
uses a linear layer with 256 outputs. The atom-mlp is a
2-hidden layer MLP with 256 hidden units. The option-mlp
is a 2-hidden layer MLP with 256 hidden units. The final
goal embedding is 256 dimensional. We use summation
to aggregate across conjunctions in the option, as well as
options in the goal. This processing is akin to using a Graph
Neural Network (Battaglia et al., 2018), where there is one
vertex for a goal, connected to one vertex per option, which
has edges to predicate vertices, labeled with either 1 or -1
(to denote negation), and each predicate vertex is labeled
with its value.

LSTM. We use a 2 layer LSTM core with 256 neurons
each, and skip connections. The LSTM takes as input ôB and
produces hB.

Atom predictor. The atom predictor uses inputs hB and
atom embedding eaB, concatenated and tiled to form a ten-
sor of size [num_atoms, atom_features + hidden_size]. We
apply a small MLP with 2 hidden layers of sizes 64 and 32
and one output neuron per atom predicted, forming pB of
size num_atoms.

GOAT module. The GOAT module takes hB, pB and g as
inputs. In order to apply attention to a flat output of an
LSTM, we first linearly upscale it to 1024 dimensions, and
then reshape to a 32 by 32 matrix (and analogously the goal
embedding is reshaped to have 32 features) and then it is
passed to an attention module with a single head, and key
and value sizes set to 128. We use a temperature of 0.1 and
softmax mixing in the GOAT module. The internal value
heads of GOAT use an MLP with 256 hidden units. Note,
that these do not accept last reward as input (as opposed to
the external value head), since these value heads are used
during inference and affect the policy output – our agent’s
policy is not conditioned on reward. The GOAT module
produces ĥB as an output.

PopArt. The PopArt value head (Hessel et al., 2019; van
Hasselt et al., 2016) uses 256 hidden units.

Policy head. The policy head is a simple MLP, applied to
ĥB, with 256 hidden units, and 6 linear, softmaxed heads
(cB)9, one per action group (see Table 5 for details). We
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Figure 38 | The architecture of the goal embedding/prediction modules. Atomic predicates are provided in a 5-hot encoded fashion, since
all the relations used take two arguments, each of which can be decomposed to a colour and shape. For player object we simply have a
special colour "me" and "opponent". Details of the architecture are provided in Section A.6.

follow a decomposed action space, meaning that we assume
the value of each action group is conditionally independent
given the current state:

cB [aB] := Pr[aB = (a1
B , . . . , a6

B )] :=
6∏
9=1
(cB)9 [a9B ],

which allows us to efficiently parameterise the joint distribu-
tion over the entire space of 2100 actions (Jaderberg et al.,
2019).

External Value Head. The value head used for RL algo-
rithms, takes, in addition to ĥB the last reward @B−1 (concate-
nated), and produces the value prediction by an MLP with
256 units.

A.6.1| Auxiliary losses

All auxiliary losses are computed by treating a trajectory as if
it was a sequence-to-sequence problem, without taking into
consideration the effects it has on the control policy (Czar-
necki et al., 2019; Jaderberg et al., 2017b).
We do not weight nor tune auxiliary losses weights, they

simply added up together, jointly with the updates coming
from the RL system. Merging is done on the update level,
meaning that RL updates do not take into consideration
effect they have on auxiliary losses either.

GOAT. There are two consistency losses �V, �h coming
from the GOAT architecture.

Atom prediction. We use standard cross-entropy loss for
multi-label classification.

External value function matching. Internal value func-
tions of GOAT have an additional alignment loss in the form
of the L2 distance between the final GOAT value and the ex-
ternal value function. We do not stop gradients on external
value function, meaning that they co-distill.

A.7| Population Based Training

After the initial period of 5e8 steps of guaranteed no evolu-
tion events, every 1e8 steps we check whether some agents
should be evolved. A pair of agents c7 and c 8 are considered
eligible for evolution from c 8 (parent) to c7 (child) if and
only if:

• c7 did not undergo evolution in last 2.5e8 steps,
• ∀9∈{10,20,50}perc(c 8 |�B) [9] ≥ perc(c7 |�B) [9],
• score7 8 :=

∑
9∈{10,20,50} perc(c 8 |�B) [9]∑
9∈{10,20,50} perc(c7 |�B) [9] > 1.01.

Next, we take a pair where score7 8 is maximum and perform
the evolution operation. This means that weights and hy-
perparameters of c7 are copied from c 8, and for each of the
hyperparameters, independently with 50% chance we apply
following mutation:

• V-MPO hyperparameter nU is multiplied or divided by
1.2 (with 50% chance).

• learning rate is multiplied or divided by 1.2 (again with
50% chance)

• ;cont is increased or decreased by 7.5 (again with 50%
chance), and clipped to (0, 900) (range of the return).

• ;cont is multiplied or divided by 1.1 (again with 50%
chance), and clipped to (0, 900) (range of the return).

• ;> is multiplied or divided by 1.2 (again with 50%
chance), and clipped to (0, 900) (range of the return).

• ;solved and ;>cont is increased or decreased by 0.1
(again with 50% chance), and clipped to (0, 1) (corre-
sponding to possible values of our MC estimator with
10 samples).

For efficiency reasons, the child agent also inherits the par-
ent’s DTG training task set.

A.8| GOAT

Placement of the GOAT module. The GOAT module is
placed after the recurrent core, and lacks recurrence itself.
The reason is to be able to query "what would happen if the
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policy’s goal was different" without having to unroll entire
trajectory with a separate goal. In principle one could have
<= + 1 copies of the agent unrolled over the experience, one
conditioned on the full goal, and the remaining <= on corre-
sponding options. The full goal conditioned unroll would
generate the actions and experience, whilst the remaining
unrolls would be off-policy. Placing the GOAT module post
recurrence avoids this redundancy, and actually forces the
agent to explicitly split it’s reasoning into goal conditioned
and goal invariant (recurrent) parts. Arguably this is also
responsible for creating an agent that is capable of easily
reacting to a new goal/change of goals mid-episode, despite
not being trained to do so.

Feedback loop that affects the policy. Let us imagine
that v [1]B > v [0]B , meaning that option 1 has a higher value
than the whole game. If this is correct, meaning that vB ≈
Vc (sB) this means that an agent could improve its policy
if it was to act as if its goal was changed purely to option
1. Consequently the loss �h, which aligns the internal state
with the internal state corresponding to following just option
1, can be seen as a step of policy improvement. We are
working under an assumption that 5c is a smooth L-Lipschitz
function, meaning that for some (hopefully small ! > 0)
‖ 5c (ĥ) − 5c (ĥ′)‖ ≤ !‖ĥ− ĥ′ |. One could also add an explicit
loss aligning policies themselves, however this would require
balancing a loss over distributions over actions (e.g. KL) with
the loss over hidden activations (L2). For simplicity we are
not doing this in this work.

A.9| Multi-agent analysis

For multi-agent analysis we took the final generation of the
agent (generation 5) and created equally spaced checkpoints
(copies of the neural network parameters) every 10 billion
steps, creating a collection of 13 checkpoints.

A.9.1| Hide and seek

We the following definition of hide and seek

g1 := see(me,opponent)
g2 := not(see(opponent,me))

We collected 1000 test worlds and ran 1 episode per
matchup (agent pair) per world.

A.9.2| Conflict Avoidance

The game is defined as

g1 := on(purple sphere, orange floor)∨
on(yellow sphere, orange floor)

g2 := on(yellow sphere, grey floor)

Experiments were conducted on a single world, where
agents spawn equally distant to both spheres, and thus
their choice of which one to use is not based on distance
heuristics they might have learned. They can also see all the
target floors initially thus there is no exploration needed.
We collected 1000 episodes per matchup (agent pair).

Chicken Cooperate Defect
Cooperate 1,1 1,2
Defect 2,1 0,0

g1 g2
q1 ∧ ¬q5 ∧ q4 q1 ∧ q5 ∧ ¬q4
q2 ∧ ¬q5 ∧ q4 q2 ∧ q5 ∧ ¬q4
q3 ∧ q5 ∧ ¬q6 q3 ∧ q4 ∧ ¬q6

Table 6 | (Top) The Chicken social dilemma with Nash Equi-
libria highlighted in bold font. (Bottom) The correspond-
ing option based encoding using task predicates. q1, q2, q3
are unique predicates and q4, q5, q6 represent conjunctions
with non overlapping predicates.

A.9.3| Encoding Chicken in Xland

We encode social dilemmas in Xland using task predicates
such that the game options can be grouped intometa-actions
and the social dilemma rewards correspond to option multi-
plicity that the player has given the opponent meta-action.
Table 6 represents the encoding for the social dilemma game
of Chicken. Here, the payoff for the meta-actions Cooperate
and Defect are given. The choice of the predicates makes
it impossible for both the players to satisfy options corre-
sponding to the Defect meta-action simultaneously (hence
the meta-action joint reward is (0, 0) for the Defect-Defect
joint meta-action), whereas the options corresponding to
Cooperate are compatible with any option. In our experi-
ments we used options of same the predicate length and
type so that they are similar in complexity to satisfy. The
exact game is given as follows:
ĝc :=see(opponent,yellow pyramid)∧

see(yellow cube,yellow sphere)∧
not(see(black pyramid,purple pyramid))

ĝd1 :=see(me,yellow pyramid)∧
see(black cube,black sphere)∧
not(see(opponent,yellow pyramid))

ĝd2 :=see(me,yellow pyramid)∧
see(purple cube,purple sphere)∧
not(see(opponent,yellow pyramid))

g1 :=ĝc ∨ ĝd1 ∨ ĝd2

g2 :=ĝc ∨ ĝd1 ∨ ĝd2

We collected 1000 test worlds and run 1 episode per
matchup (agent pair) per world.

A.10| Handauthored levels

We created a fixed set of hand-authored tasks as an addi-
tional static evaluation set. These are described in Table 7
and Table 8.

A.11| Representation analysis

To conduct the representation analysis we gathered 3000
trajectories coming from test tasks. Next, we randomly
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Name Description Agent return > 0
Capture The Cube A competitive game where both players must bring the op-

ponent’s cube to their cube and base floor in a symmetrical
world.

X

Catch Em All A cooperative game where both players must make 5 par-
ticular objects near each other, gathering them from across
the world.

X

Choose Wisely 2p Each player has the same 3 options to choose from: one of
3 cubes to hold without the other player holding that cube.

X

Choose Wisely 3p The same as above with 3 players. X

Coop or Not Both players have the one cooperative option and one com-
petitive option to choose from.

X

Find Cube The player must find the cube to be near in a complex world. X

Find Cube With Teaser The same as above, however the world allows the agent to
see the cube but the world does not allow direct navigation
to the cube.

×

Hide And Seek: Hider Asymmetric hide and seek in a simple world with the agent
playing the hider.

X

Hide And Seek: Seeker Same as above but the agent playing the seeker. X

Hold Up High Both players must hold the yellow pyramid on the highest
floor.

X

King of the Simplest Hill Both players must be on the top floor of the world without
the other player being on that floor.

X

King of The Hill Same as above but with a more complex world. X

Keep Tagging The player must stop the other player holding objects or
touching a floor.

X

Make Follow Easy The agent must lead the other player (whose policy is to
follow) to a particular floor colour.

×

Make Follow Hard Same as above however the target floor is higher and has a
smaller area.

×

Mount Doom In a world with a large central mountain, the agent must
get to the top without the other player getting to the top.

X

Mount Doom 2 Same as above but the other player starts at the top. X

Navigation With Teaser Similar to Find Cube With Teaser, however the agent must
navigate to a target floor rather than the cube.

X

Nowhere To Hide The players start on opposite towers, and the agent must
stop the other player (noop policy) from touching the tower
floor.

X

Object Permanence Black Cube The agent starts and can see a yellow cube on the left and a
black cube on the right. The agent must choose which path
to take (which means the agent loses sight of the cubes) to
reach the target cube (black in this case).

X

Object Permanence Yellow Cube Same as above but the target cube is yellow. X

One Pyramid Capture The Pyramid Same world as Capture the Cube, however both players
must take the single yellow pyramid to their base floor.

X

Race To Clifftop With Orb Both players must stand on the top of a cliff edge holding
the yellow sphere, without the other player standing on the
cliff.

X

Table 7 | List of hand authored tasks. The last column shows if the agent participates in the specific task (whether it ever
reaches a rewarding state). Continues in Table 8.
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Name Description Agent return > 0
Ridge Fencing Similar to King of the Hill, however the target floor is a

narrow ridge.
X

Sheep Herder The agent must make the other player stand near a set of
target objects.

×

Solve AGI The agent must take the black sphere and put it on the
target floor against another player that is trying to oppose
this.

X

Stay Where You Spawn The player doesn’t have to do anything, it is rewarded if it
stays in its initial position.

X

Stop Rolling Freeze Gadget In world composed of one big slope, the agent must stop
the purple sphere from touching the bottom floor without
holding it.

X

Stop Rolling Tag Gadget Same as above, except the agent has a tag gadget rather
than freeze gadget.

X

Stop Rolling Tag Gadget Easy Same as above, except the slope is less steep. X

Tag Fiesta 2p Both players have a goal to make the other player not touch
any floors. All players have the tag gadget.

X

Tag Fiesta 3p Same as above but a 3-player version. X

Tool Use Climb 1 The agent must use the objects to reach a higher floor with
the target object.

×

Tool Use Gap 1 The agent must reach an object but there is a gap in the
floor.

X

Tool Use Gap 2 Same as above but the gap is bigger. ×
Who Gets The Block Both players want to be holding the same cube but on

different coloured floors.
X

XFootball Both players want the black sphere to be touching the floor
at opposite ends of the world.

X

XRPS Counter Black A version of XRPS Section 3.2.3 in which the agent can
choose from three rock-paper-scissor like options. The other
player always chooses to hold the black sphere.

X

XRPS Counter Purple Same as above but where the other player always chooses
to hold the purple sphere.

X

XRPS Counter Yellow Same as above but where the other player always chooses
to hold the yellow sphere.

X

XRPS With Tag Gadget Full rock-paper-scissor like game. X

XRPS 2 With Tag Gadget Same as above but with different predicates representing
the options.

X

Table 8 | List of all hand authored tasks continued. The last column shows if the agent participates in the specific task
(whether it ever reaches a rewarding state).
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Figure 39 | Visualisation of the Kohonen Network used in our anal-
ysis, composed of 900 Kohonen Neurons. Three neurons are called
out in colour, with their receptive field (neurons that have non zero
update weight) colour-coded with the colour intensity representing
the weight.

selected 60 timestamps B̂7 ∈ (1, 900) and used them to sub-
sample the trajectories, resulting in 180,000 states s7 with
corresponding recorded activations of ℎ̂7 (GOAT module), h7
(LSTM state) and the goal embedding.

We train a Kohonen Network composed of 900 neurons,
arranged in a 30 × 30 grid covering a unit circle through a
transformation of the lattice over [−1, 1]2

k(F, G) :=
(
F ·

√
1 − 1

2 G
2, G ·

√
1 − 1

2 F
2
)
,

for 5000 iterations, using stochastic gradient descent with
batches of size 100 and an exponentially decaying learning
rate lr9 := 0.1 · exp(1 − 9

5000 ). The initial neurons posi-
tions are given by the minibatch k-means clustering (Lloyd,
2006) using k-means++ heuristic initialisation (Arthur and
Vassilvitskii, 2007), batch size of 100 and 100 iterations.
We use dmax = 3, with the visualisation of the emerg-

ing Kohonen Network and local receptive fields shown in
Figure 39.
We use the following definitions of properties of state sB

when playing with a goal g:

• Early in the episode. True if and only if B < B̂30 (ap-
proximately half of the episode).

• Agent is holding. True if and only if sB represents a
situation in which the agent is holding an object.

• High baseline. True if and only if vB > 7.5 (after Popart
normalisation).

• Rewarding state. True if and only if @g (sB) = 1.
• Knows it’s rewarded. True if and only if @g (sB) = 1 and

the active option has all its atoms predicted correctly.
• Knows entire state. True if and only if every atom

prediction is correct.
• One missing atom. True if and only if @g (sB) = 0 and

there exists s′ such that ‖q(sB)−q(s′)‖ = 1 and @g (s′) =
1.

• Many missing atoms. True if and only if @g (sB) = 0
and for every s′ such that @g (s′) = 1 we have ‖q(sB) −
q(s′)‖ > 1.

• One option. Whether g consists of a single option.
• Many options. Whether g consists of more than one

option.

When plotting a Kohonen map for a specific hidden state we
subtract the average activity in our dataset and use colour
using a diverging colour map. We do this for visual clarity
to avoid displaying a pattern (bias) that is constantly there.

Kohonen Neurons Once the Kohonen Neuron h for a prop-
erty > has been identified, we define the following classifier:

>̂(F) := KDE[h7 : >(s7)] (F) > KDE[h7 : ¬>(s7)] (F)

where KDE[�] (F) is the kernel density estimation density
of a set � evaluated at F. We use a Gaussian kernel and Sil-
verman’s rule to estimate its bandwidth (Silverman, 2018).
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B| Proofs for Section 3 (Environment
Properties)

Proposition 3.1. For every goal g where ^(g) = 0 or ^(g) = 1
every policy is optimal.

Proof. Lets assume that ^(g1) = H ∈ {0, 1} this
means that for every state s we have @g (s) = H.
Consequently, for every policy c we have Vc (x) =

Vc ((w, (g1, . . . , g<), (c1, . . . , c<))) = )H, and so in partic-
ular ∀cVc (x) = )H = maxc Vc (x) = V∗ (x). �

Theorem 3.1. Under the assumption that each atomic predi-
cate that does not involve negation is independently solvable,
the number of unique <-player games #G with respect to the
reward functions they define satisfies:

1
<!

[
1
<=!

<=∏
7=1

((
<0/2 − 7 · <2

<2

)
2<2

)]<
≤ #G ≤

(
<0

<2

)<·<=
.

Proof. The high level idea for the lower bound is to count
the number of games where inside each goal every predicate
is unique (and can only repeat across players).
First, let us prove the statement for two goals, g7 and

g 8, where each has a corresponding set of predicates used
(q7=92: )

<=,<9
9,:=1 and (q 8=92: )

<=,<2
9,:=1, each being lexicographically

sorted over options (indexed by =9, and over predicates
inside each option (indexed by 2:), so that the option and
alternatives orderings are irrelevant.

If the two goals are different, this means that there exists
9∗, :∗ such that q79∗ :∗ ≠ q 89∗ :∗ . Let’s take the smallest such
9∗ and a corresponding smallest :∗. This means that there
exists an option in one the goals, that the other goal does
not possess. Without loss of generality, let us assume it is an
option of g7, meaning that ¬∃9′q 89′ = q79∗ . Since this option
uses unique predicates across the goal, let us define A∗ as a
simulation state such that all the predicates of this option
are true, while all the other predicates are false. Then we
have

@g7 (A∗) = 1 ≠ 0 = @g 8 (A∗)

proving that @g7 ≠ @g 8 and thus g7 . g 8.
The only thing left is to count such goals. For that, let us

note that this is an iterative process, where for each 7th of
<= options we can pick <2 out of <0/2− 7 · <2 predicates to be
used (since we already picked 7 · <2 before, and we are not
picking negations). Once we picked the predicates, each of
them can be either itself or its negations, which introduces
the 2<2 factor. And since the process is order variant, we
need to simply divide by the number of permutations of
length <=, leading to

1
<=!

<=∏
7=1

((
<0/2 − 72 ¤<2

<2

)
2<2

)
and completing the lower bound proof.
The upper bound comes from simply noting that every

reward function that comes from a Boolean expression with
<= alternatives, each being a conjunction of <2 out of <0

predicates has a corresponding Boolean expression of this
form, and thus we can just count howmany such expressions
are there: (

<0

<2

)<·<=
,

completing the upper bound proof. �

Proposition 3.2. Exploration difficulty is a 1-Lipschitz func-
tion, meaning that for any G7,G 8 we have

‖^(G7) − ^(G 8)‖ ≤ ‖G7 − G 8‖G.

Proof. We will show this with a proof by contradiction. Let
us assume that the negation holds, meaning that there are
two such games that

‖^(G7) − ^(G 8)‖ > ‖G7 − G 8‖G,

This would mean that
‖#{q(s) : ∀9@(G7)9 (s) = 0} −#{q(s) : ∀9@(G 8)9 (s) = 0}‖
> ‖G7 − G 8‖G#q.

The left hand side of the inequality measures the difference
in the number of non-rewarding states. The right hand side
measures the difference in the number of states that simply
have a different reward (and thus already includes those
counted on the left hand side). Clearly the left hand side
cannot be strictly bigger than the right. Contradiction. �

Theorem 3.2. coop((·, g′)) is a 1
1−9 -Lipschitz function wrt.

‖ · ‖G for any g such that ^((g, g′)) = 9.

Proof. Let as assume that
‖g7 − g 8‖G = H

#q
.

From the definition of the metric this means there are exactly
H predicate states where one of them is rewarding and the
other is not.

Let us denote by G number of predicate states where both
g7 and g′ are rewarded. Then the number of predicate states
where g 8 and g′ are rewarded has to belong to (G − H, G + H).
Now by denoting 9̂ = 9#q we have

‖coop(g7, g′) − coop(g 8, g′)‖(#q − 9̂) ≤ H
= ‖g7 − g 8‖G#q,

and thus

‖coop(g7, g′) − coop(g 8, g′)‖ ≤
#q

#q − 9̂
‖g7 − g 8‖G

=
#q

#q − 9#q
‖g7 − g 8‖G =

1
1 − 9 ‖g7 − g 8‖G

It is natural to ask if the restriction imposed is not empty,
but it is easy to prove that in the vicinity of any game there
is another one satisfying said restriction.
Proposition B.1. For any game G = (g, g′) where ^(G) =
9 > 0 there exists a goal g′′ such that ^((g, g′′)) = 9 and it is
in vicinity of the previous game in the sense that

‖(g, g′′) − (g, g′)‖G =
1

2#q
.
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Without loss of generality let us assume that g has at
least one rewarding predicate state q(s∗). If q(s∗) is also
rewarding for g′ then we define g′′ as an exact copy of g′,
but set q(s∗) to be non rewarding thus the distance between
the two is 1. If it was not rewarding in g′ we symmetrically
make it rewarding in g′′, again moving by 1 in the game
space. The resulting game (g, g′′) has ^((g, g′′)) = 9 since
we did not add any new rewarding predicate states.

�

Theorem 3.3. For every two player game G such that ˆ̂(G) =
9 and a desired change in competitiveness; ∈ (−comp(G), 1−
comp(G)) such that 9|;| ∈ ℕ there exists a G′ such that
comp(G′) = comp(G) + ; and ‖G − G′‖G ≤

9 |; |
2 .

Proof. Let us first assume that; > 0, consequently comp(G)
is smaller than 1, which means that if we look atG = (g1, g2)
we can find at least 9 · (1 − ;) predicate states, where
@g1 (q(s)7) = @g2 (q(s)7). Let us define

g′2 (q(s)) :=
{1 − g2 (q(s)) if q(s) ∈ {q(s)7};97=1

g2 (q(s)) otherwise

By construction ^((g1, g2)) = ^((g1, g′2)) and
comp((g1, g2)) + ; = comp((g1, g′2)) and
‖(g1, g2) − (g1, g′2)‖ = 9;

2 . Proof for ; < 0 is analo-
gous. �

C| Proofs for Section 5 (Learning Pro-
cess)

Theorem 5.1 (Value Consistency). For a goal g :=∨9
==1 [

∧<=
2=1 q=2] we have

V∗ (g:) ≤ V∗ (g) ≤ V∗ (gC)

for g: := ∨9−1
==1

[∧<=
2=1 q=2

]
, gC := ∨9

==1
[∧<′=

2=1 q=2
]
where

<′= ≥ <=.

Proof. Since g: differs from g by simply missing the 9th
option, this means that the corresponding reward function

@g: (s) =
9−1max
==1

[
<=

min
2=1

q=2 (s)
]
≤ 9max

==1

[
<=

min
2=1

q=2 (s)
]
= @g (s).

Consequently V∗ (g:) ≤ V∗ (g). Analogously, gC differs from
g by potentially having additional predicates in each options,
this means that the corresponding reward function

@g (s) =
9max
==1

[
<=

min
2=1

q=2 (s)
]
≤ 9max

==1

[
<′=

min
2=1

q=2 (s)
]
= @gC (s).

Consequently, V∗ (g) ≤ V∗ (gC). �
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