
Symmetry Detection and Exploitation for Function
Approximation in Deep RL

(Extended Abstract)
Anuj Mahajan

Conduent labs India
Bangalore, India

anujmahajan.iitd@gmail.com

Theja Tulabandhula
University of Illinois Chicago

Chicago, USA
tt@theja.org

ABSTRACT
With recent advances in the use of deep networks for com-
plex reinforcement learning (RL) tasks which require large
amounts of training data, ensuring sample efficiency has be-
come an important problem. In this work we introduce a
novel method to detect environment symmetries using re-
ward trails observed during episodic experience. Next we
provide a framework to incorporate the discovered symme-
tries for functional approximation to improve sample effi-
ciency. Finally, we show that the use of potential based
reward shaping is especially effective for our symmetry ex-
ploitation mechanism. Experiments on classical problems
show that our method improves the learning performance
significantly by utilizing symmetry information.

Keywords
Deep Reinforcement Learning; Functional Approximation;
Symmetry; Representation Learning.

1. INTRODUCTION
In many RL scenarios, like training a rover to move on

Martian surface, the cost of obtaining samples for learning
can be high (in terms of robot’s energy expenditure), and so
sample efficiency is an important subproblem which deserves
special attention. Very often the environment has intrinsic
symmetries which can be leveraged by the agent to improve
performance and learn more efficiently. Moreover, in many
environments, the number of symmetry relations tend to in-
crease with the dimensionality of the state-action space, e.g.
for the simple case of grid world of dimension d there ex-
ist O(d!2d) fold symmetries. This can provide substantial
gains in sample efficiency while learning as we would ideally
need to consider only the equivalence classes formed under
the induced symmetry relations. However, discovering these
symmetries can be a challenging problem owing to noise in
observations and complicated dynamics of the environment.
With recent advances in deep reinforcement learning [5, 4],
it has been demonstrated that a lot of seemingly complex
tasks which pose challenges in the form of large state action
spaces and difficulty of learning good representations [1, 8];

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

can be handled very well with the use of deep networks as
functional approximators. Training these networks, however
requires large amounts of data and learning their parame-
ters necessitates coming up with careful update procedures
and defining the right objectives(see Glorot et al [3]) and is a
topic of study in its own right. Thus established methods for
MDP abstraction and minimization can’t be practically ex-
tended for use in function approximation for RL using deep
networks which builds up the premise for this work. To the
best of our knowledge, we are the first to motivate the use
of symmetry in the context of deep reinforcement learning.
In this paper we investigate methods for discovering state
space symmetries and their inclusion as prior information
via a suitable cost objective.

2. PRELIMINARIES
Symmetries in MDP: We represent MDP as a tuple M :=
〈S,A,Ψ, T,R〉, here Ψ ⊂ S × A is the set of admissible
state-action pairs, R : Ψ × S → R, T : Ψ × S → [0, 1]
are reward and transition functions respectively. The no-
tion of symmetries in MDP can be rigorously treated us-
ing the concept of MDP homomorphisms[7]. MDP homo-
morphism h from M = 〈S,A,Ψ, T,R〉 to M ′ = 〈S′, A′
,Ψ′, T ′, R′〉 is defined as a surjection h : Ψ → Ψ′, which
is itself defined by a tuple of surjections 〈f, {gs, s ∈ S}〉.
In particular, h((s, a)) := (f(s), gs(a)), with f : S → S′

and gs : As → A′f(s), & satisfies following: Firstly it pre-

serves the rewards (i.e., R′(f(s), gs(a), f(s′)) = R(s, a, s′))
& secondly it commutes with dynamics of M (i.e., T ′(f(s),
gs(a), f(s′)) = T (s, a, [s′]Bh|S)). Here we use the notation

[·]Bh|S to denote the projection of equivalence classes B that

partition Ψ under the relation h((s, a)) = (s′, a′) on to S.
Symmetries χ : Ψ→ Ψ can then be formally defined as au-
tomorphisms on M with the underlying functions f, gs being
bijective. The homomorphism requirements for a symmetry
reduce to:

T (f(s), gs(a), f(s′)) = T (s, a, s′) (1)

R(f(s), gs(a), f(s′)) = R(s, a, s′) (2)

The set of equivalence classes C[(s, a)] of state action pairs
formed under the relation χ((s, a)) = (s′, a′) partition Ψ and
can thus be used to form a quotient MDP, represented as
MQ = M/C, which is smaller and can be efficiently solved.
However in RL setting, we do not know the underlying sys-
tem dynamics, hence we estimate C[(s, a)] on the go using
the agent’s experience and use estimated equivalent classes

1619

to drive identical updates for equivalent state-action pairs
during the process of learning the optimal policy.
Reward Shaping: Reward shaping is a technique that aug-
ments the reward function R of a MDP M = 〈S,A,Ψ, T,R〉
by a shaping function F : Ψ × S → R. Thus, the agent
sees a modified reward R′(s, a, s′) = R(s, a, s′) + F (s, a, s′).
Ng et al. [6] have shown that if the reward shaping func-
tion is potential based i.e., is of the form: F (s, a, s′) =
γΘ(s′)−Θ(s) ∀s, a, s′ for some Θ : S → R, then the policy
invariance property is guaranteed. Shaping helps distinguish
these pairs by making the rewards sufficiently distinct and
consequently preventing spurious similarity estimates.

3. METHODOLOGY
Symmetry Detection: Given an MDPM = 〈S,A,Ψ, T,R〉,
we define set Πsa,j = {(σ,Nσ)} where σ is a sequence of re-
wards of length j and Nσ is the number of times it is seen
starting with state s taking action a during the execution
of policy π. We use the notation |Πsa,j | =

∑
|σ|=j Nσ and

Πsa,j ∩ Πs′a′,j = {(σ,min(Nσ, N
′
σ))}. We define the notion

of similarity between two state action pairs 〈s, a〉 and 〈s′a′〉
as follows:

χi,l0 (〈s, a〉, 〈s′a′〉) =

∑i
j=l0

|Πsa,j ∩Πs′a′,j |

(
∑i
j=l0

|Πsa,j | ∗
∑i
j=l0

|Πs′a′,j |)1/2
(3)

To efficiently compute the similarities between all the state
action pairs, we use an auxiliary structure called the reward
history tree P , which stores the prefixes of reward sequences
of length up to i for the state action pairs observed during
policy execution and also maintains a list of state, action,
occurrence frequency tuples [〈s, a, o〉]. The similarities esti-
mates can be computed by doing a breadth first traversal
on P . We consider state pairs

χsym := {〈s, a〉, 〈s′a′〉|χi,l0(〈s, a〉, 〈s′a′〉) ≥ ∆}

as similar for the given length (i and l0) and threshold pa-
rameters (∆). Note that the definition of χi,l0 enables find-
ing state action symmetries even when the actions are not
invariant under the symmetry transform ie. gs(a) 6= a∀s, a
(indeed, this is the case with the Cart-Pole problem where
∀s ∈ S, gs(Left) = Right, gs(Right) = Left). Previous
work in [2] is unable to do this. It can be shown that
the similarity measure χl0,i is complete ie. any state action
pair which is equivalent under the given symmetry should
be identifiable using 3.
Symmetry Inclusion Priors & Learning: Let Q(s, a; θ)
be the function approximator network. Having found some
symmetric state action pairs χsym, we next use this infor-
mation while training the network.

Li,total(θi) = Li,TD(θi) + λLi,Sym(θi), (4)

Eq. 4 gives training loss, where λ is weighing parameter and
the loss components are:

Li,TD(θi) = EB[((r + γmax
a′

Q(s′, a′; θi−1))−Q(s, a; θi))
2] (5)

Li,Sym(θi) = Eχsym [(Q(s′, a′; θi)−Q(s, a; θi)
2] (6)

Here B is the set of observed (s, a, r, s′) tuples following a
ε-greedy behavioral policy. Differentiating the total loss (4)
with respect to the weights, we arrive at a combination of
gradients coming from the two loss objectives:

∇θiLi,TD(θi) = Eπ,s[(r + γmax
a′

Q(s′, a′; θi−1)−

Q(s, a; θi))∇θiQ(s, a; θi)] (7)

Table 1: Iterations to convergence(rounded)
Setup Naive Girgin Sym
9x9 Θ1 136± 7 113± 5 37± 6

13x13 Θ1 237± 6 166± 7 46± 6
9x9 Θ2 174± 7 116± 6 31± 5

13x13 Θ2 241± 5 187± 6 38± 6
5x5x5 Θ2 253± 8 177± 6 41± 7
7x7x7 Θ2 275± 9 229± 10 54± 8

∇θiLi,Sym(θi) = Eπ,χsym [(Q(s′, a′; θi)−
Q(s, a; θi−1))∇θiQ(s′, a′; θi)] (8)

Eq. 7 represents the familiar Q-learning gradient. Eq. 8 is
defined so to prevent the network from destroying the knowl-
edge gained from current episode. A symmetric version of
the DQN algorithm is given below.

Algorithm 1 Sym DQN

1: Initialize: Memory D← {}, P ← {{root}, {}}
2: Initialize action-value function Q with random weights(θ)
3: for episode ≤M do
4: Initialize start state
5: for t = 1 to T do
6: With probability ε select action at
7: Otherwise select at = argmaxaQ(st, a, θ)
8: Execute action at and observe reward rt state st+1

9: Store transition (st; st; rt; st+1) in D
10: Sample random minibatch B from D
11: Find Bs the batch of symmetric pairs of B from P
12: Set targets for B & Bs
13: Perform gradient descent step as in eq 7,8

14: Update P with the episode

4. EXPERIMENTS
Grid World: In the grid world domain we consider the
problem of finding the shortest path to a goal in a nXn
square grid world. The discount factor is set to be γ = 0.9
and exploration ε = 0.1. The goal state(xG, yG) is chosen
randomly at the start of each iteration. We test two kinds
of reward shaping settings Θ1(x, y) = (|x− xG|+ |y − yG|),
Θ2(x, y) = (|x−xG|+ |y−yG|)γ|x−xG|+|y−yG|. Table 1 gives
the number of episodes required for convergence to optimal
policy for different setups. The agent running our algorithm
(labeled Sym) learns the optimal policy much faster than
baseline (labeled Naive) and previous work. On performing
the two sided Welsh’s t-test on the null hypothesis the p-
values are found to be < 10−4 for all the setups.

5. CONCLUSIONS
We have proposed a novel framework for discovering envi-

ronment symmetries and exploiting them for the paradigm
of function approximation. The experiments verify the ef-
fectiveness of our approach. For future work we would like
to explore methods for learning the symmetries using deep
networks.

REFERENCES
[1] Y. Bengio, A. Courville, and P. Vincent.

Representation learning: A review and new

1620

perspectives. IEEE transactions on pattern analysis
and machine intelligence, 35(8):1798–1828, 2013.

[2] S. Girgin, F. Polat, and R. Alhajj. State similarity
based approach for improving performance in RL. In
Proceedings of the 20th International Joint Conference
on Artifical Intelligence, IJCAI’07, pages 817–822, San
Francisco, CA, USA, 2007. Morgan Kaufmann
Publishers Inc.

[3] X. Glorot and Y. Bengio. Understanding the difficulty
of training deep feedforward neural networks. In
Aistats, volume 9, pages 249–256, 2010.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess,
T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971, 2015.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[6] A. Y. Ng, D. Harada, and S. Russell. Policy invariance
under reward transformations: theory and application
to reward shaping. In International Conference on
Machine Learning, volume 99, pages 278–287, 1999.

[7] B. Ravindran and A. G. Barto. Symmetries and model
minimization in markov decision processes. Technical
report, Amherst, MA, USA, 2001.

[8] D. Williams and G. Hinton. Learning representations
by back-propagating errors. Nature, 323:533–536, 1986.

1621

