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Abstract

In this paper we explore methods to exploit symmetries for ensuring sample efficiency
in reinforcement learning (RL), this problem deserves ever increasing attention with the
recent advances in the use of deep networks for complex RL tasks which require large
amount of training data. We introduce a novel method to detect symmetries using
reward trails observed during episodic experience and prove its completeness. We also
provide a framework to incorporate the discovered symmetries for functional approximation.
Finally we show that the use of potential based reward shaping is especially effective for
our symmetry exploitation mechanism. Experiments on various classical problems show
that our method improves the learning performance significantly by utilizing symmetry
information.

1 Introduction

Reinforcement Learning (RL) is the task of training an agent to perform optimally in an
environment using the reward and observation signals perceived upon taking actions which
change the environment dynamics. Learning optimal behavior is inherently difficult because of
challenges like credit assignment and exploration-exploitation trade offs that need to be made
while converging to a solution. In many scenarios, like training a rover to move on a Martian
surface, the cost of obtaining samples for learning can be high (in terms of robot’s energy
expenditure etc.), and so sample efficiency is an important subproblem which deserves special
attention. Very often it is the case that the environment has intrinsic symmetries which can be
leveraged by the agent to improve performance and learn more efficiently. For example, in the
Cart-Pole domain [1, 2] the state action space is symmetric with respect to reflection about
the plane perpendicular to the direction of motion of the cart (Figure 1). In fact, in many
environments, the number of symmetry relations tend to increase with the dimensionality of
the state space. For instance, for the simple case of grid world of dimension d (Figure 1)
there exist O(d!2d) fold symmetries. This can provide substantial gains in sample efficiency
while learning as we would ideally need to consider only the equivalence classes formed under
the induced symmetry relations. However, discovering these symmetries can be a challenging
problem owing to noise in observations and complicated dynamics of the environment.

With recent advances in deep reinforcement learning [3, 4], it has been demonstrated
that a lot of seemingly complex tasks like game play for Atari, control in simulated physics
environments etc., which pose challenges in the form of large (possibly continuous) state
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Figure 1. Left : Symmetry in Cart-Pole environment. Right : Symmetry in grid world.
f((x, y)) = (6− x, y), gs : {N → N,S → S,E →W,W → E}∀s.

action spaces and the difficulty of learning good representations [5]; can be handled very well
with the use of deep networks as functional approximators. Training these networks, however
requires large amounts of data and learning their parameters necessitates coming up with
careful update procedures and defining the right objectives(see [6]) and is a topic of study
in its own right. This points us to the fact that it is essential to come up with methods that
ensure sample efficiency in function approximation based RL, which builds up the premise for
this work.

To the best of our knowledge, we are the first to motivate the use of symmetry in the
aforementioned context. In this paper we investigate methods for discovering state space
symmetries and their inclusion as prior information via a suitable cost objective. We also show
that our method dovetails seamlessly with the framework of using potential based reward
shaping [7] which can help reduce the size of the data structures required for symmetry
detection and provides additional information for establishing robust similarity estimates.
Experiments on various classical control settings validate our approach with agents showing
significant gains in sample efficiency and performance when using symmetry information.

2 Related Work

Model minimization [8, 9] in MDP literature is a closely related field in which symmetries are
defined using equivalence relations on state and state action spaces, but a more generalized
notion of symmetries is presented in [10] which allows for greater state space reduction.
However, these approaches require that symmetries in environment be explicitly stated and do
not handle discovery. Methods like [11, 12] use conditionally terminating sequences formed
from observed reward action sequences and directly try to estimate state equivalence and are
closely related to our methods for symmetry detection, however they fail to be of use even in
relatively simple environments like Cart-Pole where the action mappings under the symmetry
transformation are not invariant. Most of these methods have prohibitively high overheads,
moreover none of them address aforementioned issues in the context of using them for function
approximation in deep RL. In many realistic scenarios the tasks needed to be learned by
the RL agent is composed of several subtasks which form a hierarchy across the state space.
Methods that try to use this intrinsic structure fall in the framework of temporally abstract
actions [13, 14]. Although, these methods require extensive domain knowledge specification
by the agent’s designer. [15, 16] have tried to automate this process by learning from agent
observations but their approach is suboptimal as they fail to discover all the abstractions [12].
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Recent approaches for incorporating TAA use linear function approximation [17, 18] and have
been shown to be effective. Value function generalization for sub goal setting by [19] also gives
better generalization over unseen sub goals in the function approximation setting. Our method
has the potential to be augmented with these works for finding symmetries in sub-goal spaces.

3 Preliminaries

In this section we give preliminary definitions and provide an overview of the topics we will
build upon.

Symmetries in MDP: We represent MDP as a tuple M := 〈S,A,Ψ, T,R〉 where S is
the set of states, A is the set of actions, Ψ ⊂ S × A is the set of admissible state-action
pairs, R : Ψ × S → R, T : Ψ × S → [0, 1] are reward and transition functions respectively.
The notion of symmetries in MDP can be rigorously treated using the concept of MDP
homomorphisms(see Appendix B for some definitions). [10] define an MDP homomorphism
h from M = 〈S,A,Ψ, T,R〉 to M ′ = 〈S′, A′,Ψ′, T ′, R′〉 as a surjection h : Ψ → Ψ′, which is
itself defined by a tuple of surjections 〈f, {gs, s ∈ S}〉. In particular, h((s, a)) := (f(s), gs(a)),
with f : S → S′ and gs : As → A′f(s), which satisfies two requirements: Firstly it preserves

the reward function (i.e., R′(f(s), gs(a), f(s′)) = R(s, a, s′)) and secondly it commutes with
transition dynamics of M (i.e., T ′(f(s), gs(a), f(s′)) = T (s, a, [s′]Bh|S )). Here we use the
notation [·]Bh|S to denote the projection of equivalence classes B that partition Ψ under the
relation h((s, a)) = (s′, a′) on to S. Symmetries χ : Ψ → Ψ can then be formally defined
as automorphisms on M that completely preserve the system dynamics with the underlying
functions f, gs being bijective. The homomorphism requirements for a symmetry reduce to:

T (f(s), gs(a), f(s′)) = T (s, a, s′), and (1)

R(f(s), gs(a), f(s′)) = R(s, a, s′). (2)

The set of equivalence classes C[(s, a)] of state action pairs formed under the relation
χ((s, a)) = (s′, a′) (or more generally under any homomorphism h) partition Ψ and can
thus be used to form a quotient MDP, represented as MQ = M/C, which is smaller and can
be efficiently solved. As an example in Figure 1, for symmetry χS1 w.r.t vertical axis, we
have equivalence class of state action pair [((2, 1), E)]χS1 = {((2, 1), E), ((4, 1),W )} However
in the RL setting, we do not know the underlying system dynamics and consequently, we do
not know C in advance, thus we cannot perform a model reduction. A workaround for this
would be to estimate C[(s, a)] on the go using the agent’s experience and use the estimated
set of equivalent classes to drive identical updates for equivalent state-action pairs during the
process of learning the optimal policy.

Reward Shaping: Reward shaping is a technique that augments the reward function R
of a MDP M = 〈S,A,Ψ, T,R〉 by a shaping function F : Ψ × S → R, with the goal of
providing the agent with additional useful information about the environment in the form
of rewards. Thus, the agent now sees a modified reward R′(s, a, s′) = R(s, a, s′) + F (s, a, s′)
when it takes actions. The notion of reward shaping in RL has its roots in behavioral
psychology [20]. It has been shown that the shaping is helpful in learning optimal policies
if the shaping rewards are carefully designed to ensure that the policy invariance property
holds [21]. [7] have shown that if the reward shaping function is potential based i.e., is of the
form: F (s, a, s′) = γΘ(s′) − Θ(s) ∀s, a, s′ for some Θ : S → R, then the policy invariance
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property is guaranteed. As we shall see in next section not only does shaping help in faster
convergence to optimal policy, it can be crucial for detecting symmetries in the environment
as-well.

4 Methodology

In this section we present our approach for simultaneously discovering and exploiting sym-
metries in the RL framework. Our goal is to incorporate the state action space symmetry
information early on during the learning so that regret can be minimized and the optimal
policy can be learned in a sample efficient manner. The main components involved in our
method are: (a) symmetry detection, and (b) learning with symmetry based priors. Although
our work can be applied to any form of functional approximation, we focus on Q function
approximation using deep feed forward networks in our study to illustrate the merits of our
solutions. We elaborate each of these components next.

Symmetry Detection: Given an MDP M = 〈S,A,Ψ, T,R〉, we define set Πsa,j = {(σ,Nσ)}
where σ is a sequence of rewards of length j and Nσ is the number of times it is seen
starting with state s taking action a during the execution of policy π. We use the notation
|Πsa,j | =

∑
|σ|=j Nσ and Πsa,j∩Πs′a′,j = {(σ,min(Nσ, N

′
σ))}. We define the notion of similarity

between two state action pairs 〈s, a〉 and 〈s′a′〉 as follows:

χi,l0(〈s, a〉, 〈s′a′〉) =

∑i
j=l0
|Πsa,j ∩Πs′a′,j |

(
∑i

j=l0
|Πsa,j | ∗

∑i
j=l0
|Πs′a′,j |)1/2

. (3)

To efficiently compute the similarities between all the state action pairs, we use an auxiliary
structure called the reward history tree P , which stores the prefixes of reward sequences of
length up to i for the state action pairs observed during policy execution. A reward history
tree P (N,E) is a labeled rooted tree (root being a null node). Here, N is the set of nodes
with each node labeled with a reward observation. And E is the set of directed edges defined
in the following way: Let the sequence of reward labels obtained while traversing to n starting
from the root be denoted by σn, then directed edge (n, n′) ∈ E if and only if σn appended
with the reward label of n′ form a prefix for some observed reward sequence. Additionally
each node n maintains a list of state, action, occurrence frequency tuples [〈s, a, o〉], Thus node
n, will store a tuple 〈ŝ, â, ô〉 if the reward sequence σn was observed for ô times starting from
ŝ taking action â during policy execution. The similarities can then be computed by doing a
breadth first traversal on P and maintaining two arrays Au(〈s, a〉) and Ap(〈s, a〉, 〈s′a′〉) that
store the occurrences and co-occurrences of the observed reward sequences. An estimate can

be computed by: χi,l0(〈s, a〉, 〈s′a′〉) =
Ap(〈s,a〉,〈s′a′〉)

(Au(〈s,a〉)·Au(〈s′,a′〉))1/2
.

We consider state pairs

χsym := {〈s, a〉, 〈s′a′〉|χi,l0(〈s, a〉, 〈s′a′〉) ≥ ∆},

as similar for the given length (i and l0) and threshold parameters (∆). We thus propose
that the symmetry of an environment can be deduced from the reward structure. This
assumption is backed by the fact that many real life applications do provide rich information
in the reward dynamics and are amenable to our method for discovering symmetries. A
very simple example would be a robot trying to approach a well defined object placed at a
distance, the fraction of pixels covered by the object on robot’s visual sensors would provide
an approximate notion of distance of robot from the object and is thus a good reward signal.

4



Moreover it will allow to discern which locations are equally rewarding in the environment,
thus uncovering symmetry. Also notice how reward shaping can convert an otherwise bland
signal into one having more informational value. Since our method is dependent on estimating
similarities in state action space via measuring the fraction of common observed reward
trails, shaping helps distinguish these pairs by making the rewards sufficiently distinct and
consequently preventing spurious similarity estimates. Note that the definition of χi,l0 enables
finding state action symmetries even when the actions are not invariant under the symmetry
transform ie. gs(a) 6= a∀s, a (indeed, this is the case with the Cart-Pole problem where ∀s ∈ S
gs(Left) = Right, gs(Right) = Left). Previous work in [12] is unable to do this. Finally we
present the theorem which establishes the completeness of the similarity measure χl0,i

Theorem 4.1. Let (s, a), (s′, a′) be equivalent pairs under symmetry χ〈f, gs〉 which induces
the coarsest partition on Ψ. Assuming uniform distribution over starting states for each episode
run, we have:

lim
|episodes|→∞

χi,l0(〈s, a〉, 〈s′a′〉) = 1, (4)

for all symmetric pairs, ∀l0, i ≤ |S|.

Informally completeness asserts that any state action pair which is equivalent under the
given symmetry should be identifiable using the similarity measure 3. The proof of this
theorem is given in Appendix A. We are interested in the χ that induces the coarsest partition
because it leads to the highest sample efficiency, as ideally we wish to update all the pairs in a
partition in parallel for a given observation. Finally, note that our method and theorem 4.1
do not strictly require symmetries at the MDP level. The method can find more general
homomorphic reductions and the associated equivalence classes (we omit this generalization
for brevity and conciseness).

Symmetry Inclusion Priors & Learning: Let Q(s, a; θ) be the function approximator
being used. Having found some symmetric state action pairs χsym, our next task would be
to use this information while training the function approximator network. Specifically we
want the network to have identical outputs for symmetric state-action pairs. This can be
achieved by constraining the network to learn identical representations of the symmetric pairs
in its top layers. An intuitive way of moving towards this goal would be to directly use χsym
for inducing hard constraints while minimizing an appropriate loss based on one-step TD
(temporal difference) targets:

Li,TD(θi) = EB[((r + γmax
a′

Q(s′, a′; θi−1))−Q(s, a; θi))
2]. (5)

Here B is the set of observed (s, a, r, s′) tuples following a ε-greedy behavioral policy which
ensures sufficient exploration. Thus the minimization problem becomes:

min
θi

Li,TD(θi) s.t.

Q(s, a; θi) = Q(s′, a′; θi) ∀(〈s, a〉, 〈s′a′〉) ∈ χsym.

However it becomes difficult to optimize the above problem if there are too many constraints
and methods like [22] might be required. Moreover since the estimated similarity pairs are not
guaranteed to be true, it may be better to solve a softer version of the problem by introducing
the symmetry constraints as an additional loss term:

Li,Sym(θi) = Eχsym [(Q(s′, a′; θi)−Q(s, a; θi)
2]. (6)

5



The overall loss thus becomes:

Li,total(θi) = Li,TD(θi) + λLi,Sym(θi), (7)

where λ is a weighing parameter for the symmetric loss. Differentiating the total loss (Eq. 7)
with respect to the weights, we arrive at a combination of gradients coming from the two loss
objectives:

∇θiLi,TD(θi) = Eπ,s[(r + γmax
a′

Q(s′, a′; θi−1)−Q(s, a; θi))∇θiQ(s, a; θi)], and (8)

∇θiLi,Sym(θi) = Eπ,χsym [(Q(s′, a′; θi)−Q(s, a; θi−1))∇θiQ(s′, a′; θi)]. (9)

In practice we use stochastic gradient descent for loss minimization using mini batches B. Eq. 8
represents the familiar Q-learning gradient for function approximation. Eq. 9 is defined so to
prevent the network from destroying the knowledge gained from current episode(Alternatively
we could use same targets as in 8 & increase λ gradually, we defer for conciseness). Below we
present the proposed symmetric version of the DQN algorithm.

Algorithm 1 Sym DQN

1: Initialize memory D← {}, P ← {{root}, {}}
2: Initialize action-value function Q with random weights(θ)
3: for episode ≤M do
4: Initialize start state
5: for t = 1 to T do
6: With probability ε select action at
7: Otherwise select at = argmaxaQ(st, a, θ)
8: Execute action at and observe reward rt state st+1

9: Store transition (st; st; rt; st+1) in D
10: Sample random minibatch B from D
11: Find Bs the batch of symmetric pairs of B from P
12: Set targets for B & Bs

13: Perform gradient descent step as in Eq. 8,9

14: Update P with the episode

5 Experiments

In order to validate our approach, we compare the performance of different agents using fully
connected deep feed forward neural networks with with two hidden layers for Q function
approximation. ReLU (rectified linear unit) non-linearity is used for activation at each hidden
node.The parameters involved in symmetry learning framework were found using grid search.

Grid World: In the grid world domain we consider the problem of finding the shortest
path to a goal in a nXn square grid world. The state space is described by the coordinates
(x, y), 1 ≤ x, y ≤ n. The action set is {N,E,W, S} corresponding to the directions in which
the agent can move. Upon taking a desired step, we have a 90% chance of landing on the
expected state and a 10% chance of landing on a randomly chosen adjacent state. Each
episode starts at a randomly chosen state . The discount factor is set to be γ = 0.9 and
exploration ε = 0.1. The goal state(xG, yG) is chosen randomly at the start of each iteration.
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Table 1: Iterations to convergence(rounded) Grid-World

Setup Naive Girgin et al. Sym

a 136± 7 113± 5 37± 6

b 237± 6 166± 7 46± 6

c 174± 7 116± 6 31± 5

d 241± 5 187± 6 38± 6

e 253± 8 177± 6 41± 7

f 275± 9 229± 10 54± 8

Figure 2. Grid-World plots with one standard deviation errors. ∆ = 0.8, l0 = 1, i = 5, λ = 0.4.
No of iterations: 50.

Table 2: Performance and statistical significance : Cart-Pole Domain
mean max

l0 i ∆ DQN SymDQN P-value DQN SymDQN P-value

1 5 0.8 102.83± 69.74 262.74± 64.59 < 10−5 537.38± 155.89 796.23± 173.65 2× 10−4

1 5 0.5 93.47± 62.16 233.92± 69.48 < 10−4 481.60± 163.25 812.07± 181.91 < 10−4

1 4 0.8 107.96± 67.17 236.14± 76.12 < 10−4 561.27± 156.97 759.36± 168.32 2.4× 10−3

2 5 0.8 81.57± 53.92 232.65± 89.73 < 10−4 514.53± 161.58 860.17± 192.71 < 10−4

2 5 0.5 115.24± 57.35 257.02± 58.49 < 10−4 467.92± 183.36 671.87± 169.37 3.7× 10−3

2 4 0.8 91.33± 71.39 229.48± 80.56 < 10−4 503.76± 162.13 807.49± 177.18 < 10−4
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Figure 3. Total reward with episodes. All experiments used λ = 1, γ = 0.99, ε was decayed to
0.1 starting from 1 at rate 0.98.

For the 2D grid world we test two kinds of reward shaping settings, first one based on
the potentials: Θ1(x, y) = (|x − xG| + |y − yG|) (referred to as Pot1), and second using:
Θ2(x, y) = (|x− xG|+ |y − yG|)γ|x−xG|+|y−yG| (referred to as Pot2). The maximum episode
length for grid sizes 9 and 13 are set to 480 and 800 respectively.The input for Grid-World
net is a sparse coding of size |S| + |A|. Architecture used is input → 120 → 40 → 1.The
average reward per time step for both the potential settings are plotted in Fig. 2(a,b,c,d).
A comparison with the previous work by Girgin et al. [12] and a naive agent which uses no
symmetry information is also included.

Table 1 gives the number of episodes required for the convergence to optimal policy for each
setup in Figure 2. The agent running our algorithm (labeled Sym) learns the optimal policy
much faster than baseline (labeled Naive) and previous work. We performed the two sided
Welsh’s t-test to check if the performance of the agents using our approach is same as that of
agents using other methods. For both the scenarios(”Sym vs Girgin et al.”& ”Sym vs Naive”)
the p-values are < 10−4 for all the setups, this shows that the difference in performance are
extremely significant and Alg. 1 is indeed capable of using symmetry information efficiently.
Next, reward shaping potentials Pot2 are more informative than Pot1 as they also convey
nearness to the goal state, thus agents learning under former tend to converge faster (a,b
vs c,d). Finally, it is also evident that the effects of adding symmetry priors for learning
become more significant as the size of the grid increases(a,c vs b,d). We next analyze how our
method performs when the dimensionality of the grid is increased, we set up a 3D grid world
in similar vein. Notice that this domain has 3!23 = 48 fold symmetry. Pot2 type potentials
are used : Θ(x, y, z) = (|x − xG|+ |y − yG|+ |z − zG|)γ|x−xG|+|y−yG|+|z−zG|. The maximum
episode length for grid sizes 5 and 7 are set to 1000 and 1500 respectively. Architecture used
is input→ 300→ 120→ 1. The average reward per time step are plotted in Fig. 2(e,f). It is
evident form the plot and table 1 that increase in dimensionality impacts performance of our
method relatively mildly in comparison to other methods which fail to converge within 200
episodes in (f). This makes intuitive sense as for a grid of size n in d dimensions, we have a
total of O(2dnd) Q values to learn, whereas if we were to use symmetries for model reduction,

we would be only be required to learn O(2dn
d

d!2d
) values.

Cart-Pole: The agent’s state here is given by (θ, x, ω, v) denoting the angular position of
pole, position of cart and their time derivatives is continuous and is typically bound by a box
in 4 dimensions. The action space is the move set {Left,Right} for the cart. The agent gets a
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reward of +1 after every time step it manages to keep the pole balanced within the box bounds.
As discussed before the state action pairs 〈(θ, x, ω, v), Left〉 & 〈(−θ,−x,−ω,−v), Right〉 form
an equivalence class under the symmetry exhibited by the domain. Notice the difficulty in
finding similar state-action pairs using only the observed rewards in the conventional reward
setting: very long reward histories will be needed and the estimates will have many false
positives. We define a reward shaping function for this domain as follows. To keep the
symmetry finding tractable we discretize the state space into L levels along each dimension
using uniformly spaced intervals, This is done only for reward assignment (the agent still
gets continuous input observations for the state). Thus, if the bounding box for position
were [−Xb, Xb], then each interval is of width w = 2Xb

L and the discrete dimension xd = k if
(2k+1)w

2 ≥ x ≥ (2k−1)w
2 . The shaping function is defined as : F (θ, x, ω, v) = 1− (θ2d+x

2
d+ω

2
d+v

2
d)

(L−1)2 .

Intuitively, this shaping motivates the agent to keep its coordinates near stable Cart-Pole
configurations. We modify the ‘CartPole-v0’ environment available in the OpenAI Gym
platform [23] for our experiments. The algorithms we experimented with are the DQN [3]
agent and its proposed symmetric variant Symmetric DQN (Algorithm 1) agent. We use a
discretization level L = 9 for the experiments, The maximum episode length is set to 1500
the replay memory size is set 100000 and the mini batch size of 128 is used. Agents are run
under a completely random policy for the first 25 episodes to ensure proper initialization of
the replay memory. Architecture used is 4→ 100→ 100→ 2.

Figure 3 shows the variation of total reward obtained with the number of episodes averaged
over 15 iterations for three different parameter settings. Table 2 gives the mean and the
maximum values of the total rewards obtained in an episode for the two algorithms, SymDQN
clearly performs much better in both the metrics. Once again we perform Welsh’s test to
measure statistical significance of the observations for both metrics(reported in Table) and
find that we can comfortably reject the hypothesis that symmetry inclusion via our method
has no change on performance.

Although our main objective was to ensure sample efficiency, we would like to point out
that our method compares favorably to the baseline agents in terms of training times. For
grid-world they were at-most 1.43 times slower whereas for cart-pole they were at-most 1.57
times slower.

6 Conclusion

In this paper we have proposed a novel framework for discovering environment symmetries
and exploiting them for the paradigm of function approximation, The framework consists
of two main components: The similarity detecting procedure which calculates similarity
estimates between state action pairs from reward observations, and the similarity incorporating
component which promotes learning of symmetric policies by imposing a symmetry cost. Our
approach is scalable and requires minimal additional time and space overheads, Further we have
proved the completeness of our similarity measure. We have shown the efficacy our method
through extensive experimentation using deep nets on Grid-world and Cart-Pole domains.
Further we have shown that the benefits of using symmetry information while learning get
more profound as the dimensionality of the environment increases as there is scope for multiple
symmetry occurrences. Finally we also noticed the important role reward shaping played for
the method.

We believe that incorporation of discovered environment symmetries as complementary
knowledge in reinforcement learning is a promising direction of research and we hope to have
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justifiably motivated it through this work. For future work we would like to analyze the
convergence properties of our framework.

A Proof of Theorem 4.1

Proof. We give the proof sketch using a coupling argument. Given MDP M , Let {set , aet , ret }T
e

t=0

be the random variables observed denoting states, actions and rewards respectively while
following a symmetric policy π in an episode e of length T , Let N̂sa be the number of times M
transits though the state action pair s, a and ˆNσ,sa denote the frequency of observing reward
sequence σ after such a transit after some number of episode runs (thus (σ, ˆNσ,sa) ∈ Πsa,T e).

Clearly all the estimates in lim|episodes|→∞
ˆNσ,sa

N̂sa
will converge in distribution to the true

marginals.
Now the assumption of uniform distribution over starting state allows us to define a coupled

policy execution: For every episode e starting with se0, a
e
0 we begin an episode e′ starting with

f(se0), gse0(ae0). Further, for each action aet = π(set ) taken in e we take action ae
′
t = gset (a

e
t ) in

e′ and force the transition to se
′
t+1 = f(set+1).Clearly both the sequences obey the transition

dynamics of M as the former is driven by it and the latter conforms due to given symmetry

equivalence 1 and thus form a coupling C({set , aet , ret }T
e

t=0, {se
′
t , a

e′
t , r

e′
t }T

e′

t=0). Since we had
started from symmetric state action pairs and take symmetrical transition from then on by
2 the reward sequence observed must be exactly identical (re0, ..r

e
T e) = (re

′
0 , ..r

e′
T e), hence all

reward based observations for symmetric pairs must be identical in particular: ˆNσ,sa = ˆNσ,s′a′ ,
Finally from the definition 3 we have χi,l0(〈s, a〉, 〈s′a′〉) = 1 in the coupled execution at all
the times. Since C and the uncoupled case converge in distribution to same behavior in
lim|episodes|→∞ the theorem is proved.

B Definitions

Let X,Y be sets, element x ∈ X, we then have the following constructs:

Definition B.1. Partition: B := {bi|bi ⊆ X} is a partition of X iff (∪ibi = X) ∧ (bi ∩ bj =
∅|i 6= j). We denote the block to which x belongs by [x]B.

Definition B.2. Coarseness: Let B1, B2 be two partitions of X then we say B1 is coarser
that B2 written B1 ≥c B2 iff ∀x, x′ ∈ X, [x]B2 = [x′]B2 ⇒ [x]B1 = [x′]B1.

Definition B.3. Projection: Let B be a partition of Z ⊆ X ∗ Y , let B(x) denote the distinct
blocks of B containing pairs of which x is a component, we define B|X the projection of B onto
X as the partition of X which follows: x, x′ ∈ X ∧ ([x]B|X = [x′]B|X) ⇐⇒ B(x) = B(x′).
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