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Abstract
VDN and QMIX are two popular value-based
algorithms for cooperative MARL that learn a
centralized action value function as a monotonic
mixing of per-agent utilities. While this enables
easy decentralization of the learned policy, the
restricted joint action value function can prevent
them from solving tasks that require significant
coordination between agents at a given timestep.
We show that this problem can be overcome by
improving the joint exploration of all agents dur-
ing training. Specifically, we propose a novel
MARL approach called Universal Value Explo-
ration (UneVEn) that learns a set of related tasks
simultaneously with a linear decomposition of
universal successor features. With the policies
of already solved related tasks, the joint explo-
ration process of all agents can be improved to
help them achieve better coordination. Empirical
results on a set of exploration games, challenging
cooperative predator-prey tasks requiring signif-
icant coordination among agents, and StarCraft
II micromanagement benchmarks show that Un-
eVEn can solve tasks where other state-of-the-art
MARL methods fail.

1. Introduction
Learning control policies for cooperative multi-agent rein-
forcement learning (MARL) remains challenging as agents
must search the joint action space, which grows exponen-
tially with the number of agents. Current state-of-the-art
value-based methods such as VDN (Sunehag et al., 2017)
and QMIX (Rashid et al., 2020b) learn a centralized joint
action value function as a monotonic factorization of de-
centralized agent utility functions. Due to this monotonic
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factorization, the joint action value function can be decen-
trally maximized as each agent can simply select the action
that maximizes its corresponding utility function, known as
the Individual Global Maximum principle (IGM, Son et al.,
2019).

This monotonic restriction cannot represent the value of all
joint actions and an agent’s utility depends on the policies
of the other agents (nonmonotonicity, Mahajan et al., 2019).
Even in collaborative tasks this can exhibit relative over-
generalization (RO, Panait et al., 2006), when the optimal
action’s utility falls below that of a suboptimal action (Wei
et al., 2018; 2019). While this pathology depends in prac-
tice on the agents’ random experiences, we show in Section
2 that in expectation RO prevents VDN from learning a
large set of predator-prey games during the critical phase of
uniform exploration.

QTRAN (Son et al., 2019) and WQMIX (Rashid et al.,
2020a) show that this problem can be avoided by weighting
the joint actions of the optimal policy higher. They propose
to deduce this weighting from an unrestricted joint value
function that is learned simultaneously. However, this unre-
stricted value is only a critic of the factored model, which
itself is prone to RO, and often fails in practice due to insuf-
ficient ε-greedy exploration. MAVEN (Mahajan et al., 2019)
improves exploration by learning an ensemble of monotonic
joint action value functions through committed exploration
and maximizing diversity in the joint team behavior. How-
ever, it does not specifically target optimal actions and may
not work in tasks with strong RO.

The core idea of this paper is that even when a target task
exhibits RO under value factorization, there may be similar
tasks that do not. If their optimal actions overlap in some
states with the target task, executing these simpler tasks
can implicitly weight exploration to overcome RO. We call
this novel paradigm Universal Value Exploration (UneVEn).
To learn different MARL tasks simultaneously, we extend
Universal Successor Features (USFs, Borsa et al., 2018) to
Multi-Agent USFs (MAUSFs), using a VDN decomposition.
During execution, UneVEn samples task descriptions from
a Gaussian distribution centered around the target and exe-
cutes the task with the highest value. This biases exploration
towards the optimal actions of tasks that are similar but have
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Figure 1. Simplified predator-prey environment (left), where two
agents are only rewarded when they both stand next to prey (right).

already been solved. Sampling these reduces RO for every
task that shares the same optimal action and thus increases
the number of solvable tasks, eventually overcoming RO
for the target task, too. This is the different from explo-
ration methods like MAVEN, which keep the task same but
reweigh explorative behaviours using the task returns. We
show in Section 2 on a classic RO example that UneVEn can
gradually increase the set of solvable tasks until it includes
the target task.

We evaluate our novel approach against several ablations
in predator-prey tasks that require significant coordina-
tion amongst agents and highlight the RO pathology, as
well as other commonly used benchmarks like StarCraft II
(Samvelyan et al., 2019). We also show empirically that
UneVEn significantly outperforms current state-of-the-art
value-based methods on target tasks that exhibit strong RO
and in zero-shot generalization (Borsa et al., 2018) to other
reward functions.

2. Illustrative Example
Figure 1 sketches a simplified predator-prey task where
two agents (blue and magenta) can both move left or right
(L/R) and execute a special ‘catch’ (C) action when they
both stand next to the stationary prey (red). The agents are
collaboratively rewarded (shown on the right of Figure 1)
+r when they catch the prey together and punished −p if
they attempt it alone, both ending the episode. For large p,
both VDN and QMIX can lead to relative overgeneralization
(RO, Panait et al., 2006) in the rewarded state s when agent
1’s utilityQ1(s, u1) of the catch action u1 = C drops below
that of the movement actions u1 ∈ {L,R}. At the beginning
of training, when the value estimates are near zero and both
agents explore random actions, we have:

Q1(s, C) < Q1(s, L/R) ⇒ r < p
(

1
π2(C|s) − 2

)
+ c ,

where c is a constant that depends mainly on future values.
See Appendix A for a formal derivation. The threshold at
which p yields RO depends strongly on agent 2’s probability
of choosing u2 = C, i.e., π2(C|s). For uniform exploration,
this criterion is fulfilled if p > r, but reinforcing other
actions than u2 = C can lower this threshold significantly.
However, if agent 2 chooses u2 = C for more than half of
its actions, no amount of punishment can prevent learning

r

p

Figure 2. Task space of Figure 1. Tasks solvable under uniform
exploration (π2(C|s) = 1

3
) are green, shades of red represent

tasks that on average exhibit RO for different π2(C|s).

of the correct greedy policy.

Figure 2 plots the entire task space w.r.t. p and r, marking the
set of tasks solvable under uniform exploration (green area)
and tasks exhibiting RO on average for varying π2(C|s).
MAUSFs uses a VDN decomposition of successor features
to learn all tasks in the black circle simultaneously, which
initially can only solve monotonic tasks in the green area.
UneVEn changes this by evaluating random tasks (blue
dots), and exploring those already solved (magenta dots).
This increases the fraction of observed u2 = C, and thus
the set of solvable tasks, which eventually reaches the target
task (cross).

3. Background
A fully cooperative multi-agent task can be formalized as a
decentralized partially observable Markov decision process
(Dec-POMDP, Oliehoek et al., 2016) consisting of a tuple
G = 〈S,U , P,R,Ω, O, n, γ〉. s ∈ S describes the true
state of the environment. At each time step, each agent
a ∈ A ≡ {1, ..., n} chooses an action ua ∈ U , forming
a joint action u ∈ U ≡ Un. This causes a transition in
the environment according to the state transition kernel
P (s′|s,u) : S×U×S → [0, 1]. All agents are collaborative
and share therefore the same reward function R(s,u) : S ×
U → R. γ ∈ [0, 1) is a discount factor.

Due to partial observability, each agent a cannot observe
the true state s, but receives an observation oa ∈ Ω
drawn from observation kernel oa ∼ O(s, a). At time
t, each agent a has access to its action-observation his-
tory τat ∈ Tt ≡ (Ω × U)t × Ω, on which it condi-
tions a stochastic policy πa(uat |τat ). τt ∈ T nt denotes
the histories of all agents. The joint stochastic policy
π(ut|st, τt) ≡

∏n
a=1 π

a(uat |τat ) induces a joint action
value function : Qπ(st, τt,ut) = E [Gt|st, τt,ut], where
Gt =

∑∞
i=0 γ

irt+i is the discounted return.

CTDE: We adopt the framework of centralized training
and decentralized execution (CTDE, Kraemer & Baner-
jee, 2016), which assumes access to all action-observation
histories τt and global state st during training, but each
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agent’s decentralized policy πa can only condition on its
own action-observation history τa. This approach can ex-
ploit information that is not available during execution and
also freely share parameters and gradients, which improves
the sample efficiency (see e.g., Foerster et al., 2018; Rashid
et al., 2020b; Böhmer et al., 2020).

Value Decomposition Networks: A naive way to learn in
MARL is independent Q-learning (IQL, Tan, 1993), which
learns an independent action-value function Qa(τat , u

a
t ; θa)

for each agent a that conditions only on its local action-
observation history τat . To make better use of other agents’
information in CTDE, value decomposition networks (VDN,
Sunehag et al., 2017) represent the joint action value
function Qtot as a sum of per-agent utility functions Qa:
Qtot(τ ,u; θ) ≡

∑n
a=1Q

a(τa, ua; θ). Each Qa still condi-
tions only on individual action-observation histories and can
be represented by an agent network that shares parameters
across all agents. The joint action-value function Qtot can
be trained using Deep Q-Networks (DQN, Mnih et al., 2015).
Unlike VDN, QMIX (Rashid et al., 2020b) represents the
joint action-value function Qtot with a nonlinear monotonic
combination of individual utility functions. The greedy joint
action in both VDN and QMIX can be computed in a de-
centralized fashion by individually maximizing each agent’s
utility. See OroojlooyJadid & Hajinezhad (2019) for a more
in-depth overview of cooperative deep MARL.

Task based Universal Value Functions: In this paper, we
consider tasks that differ only in their reward functions
Rw(s,u) ≡ w>φ(s,u), which are linear combinations of
a set of basis functions φ : S ×U → Rd. Intuitively, the ba-
sis functions φ encode potentially rewarded events, such as
opening a door or picking up an object. We use the weight
vector w to denote the task with reward function Rw. Uni-
versal Value Functions (UVFs, Schaul et al., 2015) extend
DQN to learn a generalizable value function conditioned
on tasks. UVFs are typically of the form Qπ(st,ut,w) to
indicate the action-value function of task w under policy π
at time t as:

Qπ(st,ut,w) = Eπ
[ ∞∑
i=0

γiRw(st+i,ut+i)
∣∣ st,ut]

= Eπ
[ ∞∑
i=0

γi φ(st+i,ut+i)
>w

∣∣ st,ut]. (1)

Successor Features: The Successor Representation (Dayan,
1993) has been widely used in single-agent settings (Barreto
et al., 2017; 2018; Borsa et al., 2018) to generalize across
tasks with given reward specifications. By simply rewriting
the definition of the action value function Qπ(st,ut,w) of
task w from Equation 1 we have:

Qπ(st,ut,w) = Eπ
[ ∞∑
i=0

γi φ(st+i,ut+i)
∣∣ st,ut]>w

≡ ψπ(st,ut)>w , (2)

where ψπ(s,u) are the Successor Features (SFs) under pol-
icy π. For the optimal policy π?z of task z, the SFs ψπ

?
z

summarize the dynamics under this policy, which can then
be weighted with any reward vector w ∈ Rd to instantly
evaluate policy π?z on it: Qπ

?
z (s,u,w) = ψπ

?
z (s,u)>w.

Universal Successor Features and Generalized Policy
Improvement: Borsa et al. (2018) introduce universal
successor features (USFs) that learn SFs conditioned on
tasks using the generalization power of UVFs. Specifi-
cally, they define UVFs of the form Q(s,u, z,w) which
represents the value function of policy πz evaluated on
task w ∈ Rd. These UVFs can be factored using the SFs
property (Equation 2) as: Q(s,u, z,w) = ψ(s,u, z)>w,
whereψ(s,u, z) are the USFs that generate the SFs induced
by task-specific policy πz . One major advantage of using
SFs is the ability to efficiently do generalized policy im-
provement (GPI, Barreto et al., 2017), which allows a new
policy to be computed for any unseen task based on instant
policy evaluation of a set of policies on that unseen task
with a simple dot-product. Formally, given a set C ⊆ Rd of
tasks and their corresponding SFs {ψ(s,u, z)}z∈C induced
by corresponding policies {πz}z∈C , a new policy π′w for
any unseen task w ∈ Rd can be derived using:

π′w(s) ∈ arg max
u∈U

max
z∈C

Q(s,u, z,w)

∈ arg max
u∈U

max
z∈C

ψ(s,u, z)>w. (3)

Setting C = {w} allows us to revert back to UVFs, as we
evaluate SFs induced by policy πw on task w itself. How-
ever, we can use any set of tasks that are similar to w based
on some similarity distribution D(·|w). The computed pol-
icy π′w is guaranteed to perform no worse on task w than
each of the policies {πz}z∈C (Barreto et al., 2017), but of-
ten performs much better. SFs thus enable efficient use of
GPI, which allows reuse of learned knowledge for zero-shot
generalization.

4. Multi-Agent Universal Successor Features
In this section, we introduce Multi-Agent Universal Suc-
cessor Features (MAUSFs), extending single-agent USFs
(Borsa et al., 2018) to multi-agent settings and show how
we can learn generalized decentralized greedy policies for
agents. The USFs based centralized joint action value
function Qtot(τ ,u, z,w) allows evaluation of joint pol-
icy πz =

〈
π1
z, . . . , π

n
z

〉
comprised of local agent policies

πaz of the same task z on task w. However, each agent a
may execute a different policy πaza of different task za ∈ C,
resulting in a combinatorial set of joint policies. Maximiz-
ing over all combinations z̄ ≡ 〈z1, . . . ,zn〉 ∈ Cn should
therefore enormously improve GPI. To enable this flexibil-
ity, we define the joint action-value function (Qtot) of joint
policy πz̄ = {πaza}za∈C evaluated on any task w ∈ Rd as:
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Figure 3. Schematic illustration of the MAUSFs training and UneVEn exploration with GPI policy.

Qtot(τ ,u, z̄,w) = ψtot(τ ,u, z̄)>w, where ψtot(τ ,u, z̄)
are the MAUSFs of (τ ,u) summarizing the joint dynamics
of the environment under joint policy πz̄ . However, training
centralized MAUSFs and using centralized GPI to maxi-
mize over a combinatorial space of z̄ becomes impractical
when there are more than a handful of agents, since the joint
action space (U) and joint task space (Cn) of the agents
grows exponentially with the number of agents. To leverage
CTDE and enable decentralized execution by agents, we
therefore propose novel agent-specific SFs for each agent a
following local policy πaza , which condition only on its own
local action-observation history and task za.

Decentralized Execution: We define local utility
functions for each agent a as Qa(τa, ua, za,w) =
ψa(τa, ua, za; θ)>w, where ψa(τa, ua, za; θ) are
the local agent-specific SFs induced by local policy
πaza(ua|τa) of agent a sharing parameters θ. Intuitively,
Qa(τa, ua, za,w) is the utility function for agent a when
local policy πaza(ua|τa) of task za is executed on task w.
We use VDN decomposition to represent MAUSFs ψtot as
a sum of local agent-specific SFs for each agent a:

Qtot(τ ,u, z̄,w) =
n∑
a=1

Qa(τa, ua, za,w)

=
n∑
a=1
ψa(τa, ua, za; θ)>︸ ︷︷ ︸
ψtot(τ ,u,z̄;θ)

w (4)

We can now learn local agent-specific SFs ψa for each
agent a that can be instantly weighted with any task vector
w ∈ Rd to generate local utility functions Qa, thereby
allowing agents to use the GPI policy in a decentralized
manner.

Decentralized Local GPI: Our novel agent-specific SFs
allow each agent a to locally perform decentralized GPI by
instant policy evaluation of a set C of local task policies

{πaza}za∈C on any unseen task w to compute a local GPI
policy. Due to the linearity of the VDN decomposition,
this is equivalent to maximization over all combinations of
z̄ ≡ 〈z1, . . . ,zn〉 ∈ C × . . .× C ≡ Cn as:

π′w(τ ) ∈ arg max
u∈U

max
z̄∈Cn

Qtot(τ ,u, z̄,w)

∈
{

arg max
ua∈U

max
za∈C

ψa(τa, ua, za; θ)>w
}n
a=1

. (5)

As all of the above relies on the linearity of the VDN decom-
position, it cannot be directly applied to nonlinear mixing
techniques like QMIX (Rashid et al., 2020b).

Training: MAUSFs for task combination z̄ are trained end-
to-end by gradient descent on the loss:

L(θ, z̄) = E∼B
[∥∥φ(st,ut) + γψtot(τt+1,u

′
z̄, z̄; θ−)

−ψtot(τt,ut, z̄; θ)
∥∥2

2

]
, (6)

where the expectation is over a minibatch of samples
{(st,ut, τt)} from the replay buffer B (Lin, 1992), θ−

denotes the parameters of a target network (Mnih et al.,
2015) and joint actions u′

z̄ = {u′aza}na=1 are selected indi-
vidually by each agent network using the current parame-
ters θ (called Double Q-learning, van Hasselt et al., 2016):
u′aza = arg maxu∈U ψ

a(τat+1, u,z
a; θ)>za. Each agent

learns therefore local agent-specific SFs ψa(τa, ua, z; θ)
by gradient descent on L(θ, z̄) for all z ∈ C ≡ ν ∪ {w},
where ν ∼ D(·|w) is drawn from a distance measure around
target task w. The green region of Figure 3 shows a CTDE
based architecture to train MAUSFs for a given target task
w. A detailed algorithm is presented in Appendix B.

5. UneVEn
In this section, we present UneVEn (red region of Figure
3), which leverages MAUSFs and decentralized GPI to help
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overcome relative overgeneralization on the target task w.
At the beginning of every exploration episode, we sample
a set of related tasks ν = {z ∼ D(·|w)}, containing poten-
tially simpler reward functions, from a distributionD around
the target task. The basic idea is that some of these related
tasks can be efficiently learned with a factored value func-
tion. These tasks are therefore solved early and exploration
concentrates on the state-action pairs that are useful to them.
If other tasks close to those already solved have the same
optimal actions, this implicit weighting allows to solve them
too (shown by Rashid et al., 2020a). Furthermore, tasks
closer to w are sampled more frequently, which biases the
process to eventually overcome relative overgeneralization
on the target task itself.

Our method assumes that the basis functions φ and the
reward-weights w of the target task are known, but Barreto
et al. (2020) show that both can be learned using multi-
task regression. Many choices for D are possible, but in
the following we sample related tasks using a normal dis-
tribution centered around the target task w ∈ Rd with a
small variance σ as D = N (w, σId). This samples similar
tasks closer to w more frequently. As long as σ is large
enough to cover tasks that do not induce RO (see Figure
2), our method works well and therefore, does not rely on
any domain knowledge. The resulting task vectors weight
the basis functions φ differently and represent different re-
ward functions. In particular the varied reward functions
can make these tasks much easier, but also harder, to solve
with monotonic value functions. The consequences of sam-
pling harder tasks on learning are discussed with the below
action-selection schemes.

Action-Selection Schemes: UneVEn uses two novel
schemes to enable action selection based on related tasks.
To emphasize the importance of the target task, we define a
probability α of selecting actions based on the target task.
Therefore, with probability 1−α, the action is selected based
on the related task. Similar to other exploration schemes,
α is annealed from 0.3 to 1.0 in our experiments over a
fixed number of steps at the beginning of training. Once this
exploration stage is finished (i.e., α = 1), actions are always
taken based on the target task’s joint action value function.
Each action-selection scheme employs a local decentralized
GPI policy, which maximizes over a set of policies πz based
on z ∈ C1 (also referred to as the evaluation set) to estimate
the Q-values of another set of tasks k ∈ C2 (also referred to
as the target set) using:

ut =
{
uat = arg max

u∈U
max
k∈C2

max
z∈C1

Qa(τat ,u,z,k)︷ ︸︸ ︷
ψa(τat , u,z; θ)>k

}
a∈A

.

(7)

Here C1 = ν ∪{w} is the set of target and related tasks that
induce the policies that are evaluated (dot-product) on the

set of tasks C2, which varies with different action-selection
schemes. The red box in Figure 3 illustrates UneVEn explo-
ration. For example, Q-learning always picks actions based
on the target task, i.e., the target set C2 = {w}. However,
this scheme does not favour important joint actions. We call
this default action-selection scheme target GPI and execute
it with probability α. We now propose two novel action-
selection schemes based on related tasks with probability
1− α, and thereby implicitly weighting joint actions during
learning.

Uniform GPI: At the beginning of each episode, this action-
selection scheme uniformly picks one related task, i.e., the
target set C2 = {k ∼ Uniform(ν)}, and selects actions
based on that task using the GPI policy throughout the
episode. This uniform task selection explores the learned
policies of all related tasks in D. This works well in prac-
tice as there are often enough simpler tasks to induce the
required bias over important joint actions. However, if the
sampled related task is harder than the target task, the action-
selection based on these harder tasks might hurt learning on
the target task and lead to higher variance during training.

Greedy GPI: At every time-step t, this action-selection
scheme picks the task k ∈ ν ∪ {w} that gives the highest
Q-value amongst the related and target tasks, i.e., the target
set becomes C2 = ν ∪ {w}. Due to the greedy nature of
this action-selection scheme, exploration is biased towards
solved tasks, as those have larger values. We are thus explor-
ing the solutions of tasks that are both solvable and similar
to the target task w, which should at least in some states
lead to the same optimal joint actions as w.

NO-GPI: To demonstrate the influence of GPI on the
above schemes, we also investigate ablations, where we
define the evaluation set C1 = {k} to only contain the
currently estimated task k, i.e., using ut = {uat =
arg maxu∈U maxk∈C2 ψ

a(τat , u,k; θ)>k}a∈A for action
selection.

6. Experiments
In this section, we evaluate UneVEn on a variety of com-
plex domains. For evaluation, all experiments are carried
out with six random seeds and results are shown with± stan-
dard error across seeds. We compare our method against a
number of SOTA value-based MARL approaches: IQL (Tan,
1993), VDN (Sunehag et al., 2017), QMIX (Rashid et al.,
2020b), MAVEN (Mahajan et al., 2019), WQMIX (Rashid
et al., 2020a), QTRAN (Son et al., 2019), and QPLEX
(Wang et al., 2020a).

Domain 1 : m-Step Matrix Game

We first evaluate UneVEn on the m-step matrix game pro-
posed by Mahajan et al. (2019). This task is difficult to
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solve using simple ε-greedy exploration policies as com-
mitted exploration is required to achieve the optimal return.
Appendix C shows the m-step matrix game in which the
first joint decision of two agents determines the maximal
outcome after another m − 1 decisions. One initial joint
action can reach a return of up to m+ 3, whereas another
only allows for m. This challenges monotonic value func-
tions, as the target task exhibits RO. Figure 4 shows the
results of all methods on this task for m = 10 after training
for 35k steps. UneVEn with greedy (UneVEn-Greedy-GPI)
action selection scheme converges to an optimal return and
both greedy and uniform (UneVEn-Uniform-GPI) schemes
outperforms all other methods, which suffer from poor ε-
greedy exploration and often learn to take the suboptimal
action in the beginning. Due to RO, it becomes difficult to
change the policy later, leading to suboptimal returns and
only rarely converging to optimal solutions.

Domain 2 : Cooperative Predator-Prey

We next evaluate UneVEn on challenging cooperative
predator-prey tasks similar to one proposed by Son et al.
(2019), but significantly more complex in terms of the co-
ordination required amongst agents. We use a complex
partially observable predator-prey (PP) task involving eight
agents (predators) and three prey that is designed to test coor-
dination between agents, as each prey needs to be captured
by at least three surrounding agents with a simultaneous
capture action. If only one or two surrounding agents at-
tempt to capture the prey, a negative reward of magnitude p
is given. Successful capture yields a positive reward of +1.
More details about the task are available in Appendix C.

Simpler PP Tasks: We first demonstrate that both VDN
and QMIX with monotonic value functions can learn on
target tasks with simpler reward functions. To generate a
simpler task, we remove the penalty associated with mis-
coordination, i.e., p = 0, thereby making the target task
free from RO. Figure 6 shows that both QMIX and VDN
can solve this task as there is no miscoordination penalty
and the monotonic value function can learn to efficiently
represent the optimal joint action values. Other SOTA value-
based approaches (MAVEN, WQMIX, and QPLEX) and

Figure 4. SOTA comparison on the m-step matrix game (m = 10).

UneVEn with both uniform (UneVEn-Uniform-GPI) and
greedy (UneVEn-Greedy-GPI) action-selection schemes
can solve this target task as well.

Harder PP Tasks: We now raise the chance that RO
occurs in the target task by increasing the magnitude of
the penalty associated with each miscoordination, i.e.,
p ∈ {0.004, 0.008, 0.012, 0.016}. For a smaller penalty
of p = 0.004, Figure 5 (top left) shows that VDN can still
solve the task, further suggesting that simpler reward related
tasks (with lower penalties) can be solved with monotonic
approximations. However, both QMIX and VDN fail to
learn on three other higher penalty target tasks due to their
monotonic constraints, which hinder the accurate learning
of the joint action value functions. Intuitively, when uncoor-
dinated joint actions are much more likely than coordinated
ones, the penalty term can dominate the average value es-
timated by each agent’s utility. This makes it difficult to
learn an accurate monotonic approximation that selects the
optimal joint actions.

Interestingly, other SOTA value-based approaches that aim
to address the monotonicity restriction of QMIX and VDN
such as MAVEN, QTRAN, WQMIX, and QPLEX also fail
to learn on higher penalty tasks. WQMIX solves the task
when p = 0.004, but fails on the other three higher penalty
target tasks. Although WQMIX uses an explicit weighting
mechanism to bias learning towards the target task’s optimal
joint actions, it must identify these actions by learning an
unrestricted value function first. An ε-greedy exploration
based on the target task takes a long time to learn such a
value function, which is visible in the large standard error
for p ∈ {0.008, 0.012, 0.016} in Figure 5. By contrast,
both UneVEn-Uniform-GPI and UneVEn-Greedy-GPI can
approximate value functions of target tasks exhibiting severe
RO more accurately and solve the task for all values of
p. As expected, the variance of UneVEn-Uniform-GPI is
high on higher penalty target tasks (for e.g., p = 0.016) as
exploration suffers from action selection based on harder
related tasks. UneVEn-Greedy-GPI does not suffer from this
problem. Videos of learnt policies are available at https:
//sites.google.com/view/uneven-marl/.

We emphasize that while having an unrestricted joint value
function (such as WQMIX, QPLEX and QTRAN) may al-
low to overcome RO, these algorithms are not guaranteed
to do so in any reasonable amount of time. For example,
Rashid et al. (2020a) note in Sec. 6.2.2 that training such a
joint function can require much longer ε-greedy exploration
schedules. The exact optimization of QTRAN is compu-
tationally intractable and a lot of recent work has shown
the unstable performance of the corresponding approximate
versions. Similarly QPLEX has shown to perform poorly on
hard SMAC maps in our results and in Rashid et al. (2020a).
On the other hand, MAVEN learns a diverse ensemble of

https://sites.google.com/view/uneven-marl/
https://sites.google.com/view/uneven-marl/
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Figure 5. Comparison between UneVEn and SOTA MARL baselines with p ∈ {0.004, 0.008, 0.012, 0.016}.

monotonic action-value functions, but does not concentrate
on joint actions that would overcome RO if explored more.

Ablations: Figure 7 shows ablation results for higher
penalty tasks, i.e., p = {0.012, 0.016}. To contrast the ef-
fect of UneVEn on exploration, we compare our two novel
action-selection schemes to UneVEn-Target-GPI, which
only selects the greedy actions of the target task. The re-
sults clearly show that UneVEn-Target-GPI fails to solve the
higher penalty RO tasks as the employed monotonic joint
value function of the target task fails to accurately represent
the values of different joint actions. This demonstrates the
critical role of UneVEn and its action-selection schemes.

Next we evaluate the effect of GPI by comparing against
UneVEn with MAUSFs without using the GPI policy, i.e.,
setting the evaluation set C1 = {k} in Equation 7. First,
UneVEn using a NOGPI policy with both uniform (Uniform-
NOGPI) and greedy (Greedy-NOGPI) action selection out-

Figure 6. Baseline predator-prey results without RO (p = 0).

performs Target-NOGPI, further strengthening the claim
that UneVEn with its novel action-selection scheme enables
efficient exploration and bias towards optimal joint actions.
In addition, the left and middle plots of Figure 7 shows
that for each corresponding action-selection scheme (uni-
form, greedy, and target), using a GPI policy (∗-GPI) is
consistently favourable as it performs either similarly to the
NOGPI policy (∗-NOGPI) or much better. GPI appears to
improve zero-shot generalization of MAUSFs across tasks,
which in turn enables good action selection for related tasks
during UneVEn exploration.

Zero-Shot Generalization: Lastly, we evaluate this zero-
shot generalization for all methods to check if the learnt
policies are useful for unseen high penalty test tasks. We
train all methods for 8 million environmental steps on a task
with p = 0.004, and test 60 rollouts of the resulting poli-
cies of all methods that are able to solve the training task,
i.e., UneVEn-Greedy-GPI, UneVEn-Uniform-GPI, VDN,
MAVEN, and WQMIX, on tasks with p ∈ {0.2, 0.5}. For
policies trained with UneVEn-Greedy-GPI and UneVEn-
Uniform-GPI, we use the NOGPI policy for the zero-shot
testing, i.e., C1 = C2 = {w}. The right plot of Figure 7
shows that UneVEn with both uniform and greedy schemes
exhibits great zero-shot generalization and solves both test
tasks even with very high penalties. As MAUSFs learn
the reward’s basis functions, rather than the reward itself,
zero-shot generalization to larger penalties follows naturally.
Furthermore, using UneVEn exploration allows the agents
to collect enough diverse behaviour to come up with a near
optimal policy for the test tasks. On the other hand, the
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Figure 7. Ablation results. (left, middle): Comparison between different action selection schemes of UneVEn for p ∈ {0.012, 0.016}.
(right): Zero-shot generalization comparison; training on p = 0.004, testing on p ∈ {0.2, 0.5}.

Figure 8. Comparison between UneVEn and SOTA MARL baselines on SMAC maps with p = 1.0.

learnt policies for all other methods that solve the target
task with p = 0.004 are ineffective in these higher penalty
RO tasks, as they do not learn to avoid unsuccessful capture
attempts. See Appendix D for details about the implementa-
tions and Appendix E for additional ablation experiments.

Domain 3 : Starcraft Multi-Agent Challenge (SMAC)

We now evaluate UneVEn on challenging cooperative Star-
Craft II (SC2) maps from the popular SMAC benchmark
(Samvelyan et al., 2019). Our method aims to overcome rel-
ative overgeneralization (RO) which happens very often in
practice with cooperative games (Wei & Luke, 2016). How-
ever, the default reward function in SMAC does not suffer
from RO as it has been designed with QMIX in mind, delib-
erately dropping any punishment for loosing ally units and
thereby making it solvable for all considered baselines. We
therefore consider SMAC maps where each ally agent unit is
additionally penalized (p) for being killed or suffering dam-
age from the enemy, in addition to receiving positive reward
for killing/damage on enemy units. A detailed discussion
about different reward functions in SMAC along with their
implications are discussed in Appendix E. The additional
penalty to the reward function (similar to QTRAN++, Son
et al. (2020)) for losing our own ally units induces RO in
the same way as in our predator prey example. This makes
maps that were classified as “easy” by default benchmark
(e.g., “8m” in Fig. 8) very hard to solve for methods like
VDN and QMIX for p = 1.0 (equally weighting the lives of
ally and enemy units).

Prior work on SC2 has established that VDN/QMIX can

solve nearly all SMAC maps in the absence of any punish-
ment (i.e., negative reward scaling p = 0) and we confirm
this also holds for low punishments (see results in Figure
13 for p = 0.5 in Appendix E). However, this puts little
weight on the lives of your own allies and cautious gen-
erals may want to learn a more conservative policy with
higher punishment for losing their ally units. Similarly
to the predator-prey example, Figure 8 shows that increas-
ing the punishment to p = 1 (equally weighting the lives
of allies and enemies) leads VDN/QMIX and other SOTA
MARL methods like QTRAN, WQMIX and QPLEX to fail
in many maps, whereas our novel method UneVEn, in par-
ticular with greedy action selection, reliably outperforms
baselines on all tested SMAC maps.

7. Related Work
Improving monotonic value function factorization in
CTDE: MAVEN (Mahajan et al., 2019) shows that the
monotonic joint action value function of QMIX and VDN
suffers from suboptimal approximations on nonmonotonic
tasks. It addresses this problem by learning a diverse ensem-
ble of monotonic joint action-value functions conditioned
on a latent variable by optimizing the mutual information
between the joint trajectory and the latent variable. Deep
Coordination Graphs (DCG) (Böhmer et al., 2020) uses
a predefined coordination graph (Guestrin et al., 2002) to
represent the joint action value function. However, DCG
is not a fully decentralized approach and specifying the
coordination graph can require significant domain knowl-
edge. Son et al. (2019) propose QTRAN, which addresses
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the monotonic restriction of QMIX by learning a (decen-
tralizable) VDN-factored joint action value function along
with an unrestricted centralized critic. The corresponding
utility functions are distilled from the critic by solving a
linear optimization problem involving all joint actions, but
its exact implementation is computationally intractable and
the corresponding approximate versions have unstable per-
formance. TESSERACT (Mahajan et al., 2021) proposes a
tensor decomposition based method for learning arbitrary
action-value functions, they also provide sample complexity
analysis for their method. QPLEX (Wang et al., 2020a) uses
a duplex dueling (Wang et al., 2016) network architecture to
factorize the joint action value function with linear decom-
position structure. WQMIX (Rashid et al., 2020a) learns a
QMIX-factored joint action value function along with an
unrestricted centralized critic and proposes explicit weight-
ing mechanisms to bias the monotonic approximation of the
optimal joint action value function towards important joint
actions, which is similar to our work. However, in our work,
the weightings are implicitly done through action-selection
based on related tasks, which are easier to solve.

Exploration: There are many techniques for exploration
in model-free single-agent RL, based on intrinsic novelty
reward (Bellemare et al., 2016; Tang et al., 2017), pre-
dictability (Pathak et al., 2017), pure curiosity (Burda et al.,
2019) or Bayesian posteriors (Osband et al., 2016; Gal et al.,
2017; Fortunato et al., 2018; O’Donoghue et al., 2018). In
the context of multi-agent RL, Böhmer et al. (2019) dis-
cuss the influence of unreliable intrinsic reward and Wang
et al. (2020c) quantify the influence that agents have on
each other’s return. Similarly, Wang et al. (2020b) propose
a learnable action effect based role decomposition which
eases exploration in the joint action space. Zheng & Yue
(2018) propose to coordinate exploration between agents by
shared latent variables, whereas Jaques et al. (2018) investi-
gate the social motivations of competitive agents. However,
these techniques aim to visit as much of the state-action
space as possible, which exacerbates the relative overgener-
alization pathology. Approaches that use state-action space
abstraction can speed up exploration, these include those
which can automatically learn the abstractions (e.g., Ma-
hajan & Tulabandhula, 2017a;b) and those which require
prior knowledge (e.g., Roderick et al., 2018), however they
are difficult to scale for multi-agent scenarios. In contrast,
UneVEn explores similar tasks. This guides exploration to
states and actions that prove useful, which restricts the ex-
plored space and overcomes relative overgeneralization. To
the best of our knowledge, the only other work that explores
the task space is Leibo et al. (2019): they use the evolution
of competing agents as an auto-curriculum of harder and
harder tasks. Collaborative agents cannot compete against
each other, though, and their approach therefore is not suit-
able to learn cooperation.

Successor Features: Most of the work on SFs have been fo-
cused on single-agent settings (Dayan, 1993; Kulkarni et al.,
2016; Lehnert et al., 2017; Barreto et al., 2017; 2018; Borsa
et al., 2018; Lee et al., 2019; Hansen et al., 2019) for transfer
learning and zero-shot generalization across tasks with dif-
ferent reward functions. Gupta et al. (2019) use single-agent
SFs in a multi-agent setting to estimate the probability of
events, but they only consider transition independent MARL
(Becker et al., 2004; Gupta et al., 2018).

8. Conclusion
This paper presents a novel approach decomposing multi-
agent universal successor features (MAUSFs) into local
agent-specific SFs, which enable a decentralized version of
the GPI to maximize over a combinatorial space of agent
policies. We propose UneVEn, which leverages the general-
ization power of MAUSFs to perform action selection based
on simpler related tasks to address the suboptimality of the
target task’s monotonic joint action value function in cur-
rent SOTA methods. Our experiments show that UneVEn
significantly outperforms VDN, QMIX and other state-of-
the-art value-based MARL methods on challenging tasks
exhibiting severe RO.

9. Future Work
UneVEn relies on the assumption that both the basis func-
tions and the reward-weights of the target task are known
which restricts the applicability of the method. Moreover,
our SFs based method requires learning in d dimensions in-
stead of learning scalar values for each action in the case of
Q-learning, which decreases the scalability of our method
for domains where d is very large. More efficient neural net-
work architectures with hyper networks (Ha et al., 2016) can
be leveraged to handle larger dimensional features. Finally,
the paradigm of UneVEn with related task based action se-
lection can be directly applied with universal value functions
(UVFs) (Schaul et al., 2015) to enable other state-of-the-
art nonlinear mixing techniques like QMIX (Rashid et al.,
2020b) and QPLEX (Wang et al., 2020a) to overcome RO,
at the cost of losing ability to perform GPI.
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