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MARL

I Cooperative multi-agent reinforcement learning (MARL) is a
key tool for addressing many real-world problems

I Robot swarm, autonomous cars

I Key challenges: CTDE

I Scalability due to exponential state action space blowup

I Decentralised execution



Background
I Dec-POMDP defined as a tuple G = hS,U,P, r ,Z ,O, n, �i
I

S is the set of states

I
U the set of available actions per agent

I agents i 2 A ⌘ {1, ..., n}
I joint action u 2 U ⌘ U

n

I
P(s

0|s,u) : S ⇥ U ⇥ S ! [0, 1] is the state transition function

I
r(s,u) : S ⇥ U ! R is the reward function

I observations z 2 Z according to observation function
O(s, i) : S ⇥A ! Z .

I � is discount factor

I action-observation history for an agent i is
⌧ i 2 T ⌘ (Z ⇥ U)

⇤



MARL problem continued
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The goal of the problem is to find the optimal action value
function Q

⇤ and the corresponding policy ⇡⇤.



Decentralisability
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are agent utilities.

Figure 1: Classification of MARL problems.



Existing methods

I Several algorithms have been proposed which ensure
decentralisability though structural constraints

I QMIX uses monotonic transformations on q
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I VDN uses sum of utilities Q
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I QTRAN: poses the decentralisation problem as optimisation
with O(|S||U|n) constraints and relaxes for tractability.

I IQL approximates by treating as an independent single
agent problem.



Problems with existing methods

I Existing methods do not facilitate committed exploration

I Imposing structural constraints on the hypothesis learnt can
induce suboptimality (all existing methods suffer from this)

I Structural constraints interfere with exploration

I Use latent space to address the above problems! (MAVEN)



Analysis

Definition (Non-monotonicity)

For any state s 2 S and agent i 2 A given the actions of the
other agents u

�i 2 U

n�1, the Q-values Q(s, (ui , u�i

)) form an
ordering over the action space of agent i . Define
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possible such orderings over the action-values. The joint-action
value function is non-monotonic if 9i 2 A, u�i
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Example Non-Monotonic payoff

Table 1: (a) An example of a non-monotonic payoff matrix, (b) QMIX
values under uniform visitation.

A B C

A 10.4 0 10
B 0 10 10
C 10 10 10

(a)

A B C

A 6.08 6.08 8.95
B 6.00 5.99 8.87
C 8.99 8.99 11.87

(b)



QMIX analysis : Uniform visitation

Theorem (Uniform visitation QMIX)

For n player, k � 3 action matrix games (|A| = n, |U| = k),

under uniform visitation; Q

qmix

learns a �-suboptimal policy for

any time horizon T , for any 0 < �  R
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QMIX analysis: ✏ greedy

Theorem (✏-greedy visitation QMIX)

For n player, k � 3 action matrix games, under ✏-greedy

visitation ✏(t); Q
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learns a �-suboptimal policy for any time
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MAVEN: Multi-Agent Variational Exploration

Figure 2: Architecture for MAVEN.



MAVEN

I Fixing z gives a joint action-value function Q(u, s; z,�, ⌘, )
which implicitly defines a greedy deterministic policy
⇡A(u|s; z,�, ⌘, ). This gives the corresponding Q-learning
loss:
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I The hierarchical policy objective for z, freezing the
parameters  , ⌘,� is given by:

J
RL

(✓) =

Z
R(⌧A|z)p✓(z|s0)⇢(s0)dzds0. (5)



Encouraging diverse behaviour with MI
I Mutual Information loss

J
MI

= H(�(⌧ ))�H(�(⌧ )|z) = H(z)�H(z|�(⌧ )), (6)

I Tractable lower bound given by:

J
MI

� H(z) + E�(⌧ ),z [log(q�(z|�(⌧ )))]. (7)

I The variational approximation can also be seen as a
discriminator/critic that induces an auxiliary reward field
r

z

aux

(⌧ ) = log(q�(z|�(⌧ )))� log(p(z)) on the trajectory
space.
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Experiments

I Toy domain: Matrix games

I StarCraft-2



m-step matrix games

(a) (b)

Figure 3: (a) m-step matrix game for m = 10 case (b) median return of
MAVEN and QMIX method on 10-step matrix game for 100k training
steps, averaged over 20 random initializations (2nd and 3rd quartile is
shaded).



StarCraft-2 SMAC

(a) corridor Super Hard (b) 6h vs 8z Super Hard

(c) 2s3z Easy

Figure 4: The performance of various algorithms on three SMAC maps.



StarCraft-2 Exploration experiments

(a) zealot cave

(b) zealot cave depth 3 (c) zealot cave depth 4

Figure 5: State exploration and policy robustness



StarCraft-2 Robustness experiments

(a) 2 corridors

(b) Shorter corridor closed at 5mil
steps

Figure 6: State exploration and policy robustness



Representation capacity

Figure 7: tsne plot for s0 labelled with z, 16 categories, 3s5z initial
(left) to final (right)



Ablations

(a) (b)

(c) (d)

Figure 8: Figs. 8(a) and 8(b) investigate uniform hierarchical policy.
Figs. 8(c) and 8(d) investigate effects of MI loss.
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