MAVEN: Multi-Agent Variational Exploration

Anuj Mahajan

WhiRL, University of Oxford

Joint work with Tabish, Mika and Shimon

MARL

- Cooperative multi-agent reinforcement learning (MARL) is a key tool for addressing many real-world problems
- Robot swarm, autonomous cars
- Key challenges: CTDE
 - Scalability due to exponential state action space blowup
 - Decentralised execution

Background

- ▶ Dec-POMDP defined as a tuple $G = \langle S, U, P, r, Z, O, n, \gamma \rangle$
- S is the set of states
- U the set of available actions per agent
- ▶ agents $i \in A \equiv \{1, ..., n\}$
- ▶ joint action $\mathbf{u} \in \mathbf{U} \equiv U^n$
- ▶ $P(s'|s, \mathbf{u}) : S \times \mathbf{U} \times S \rightarrow [0, 1]$ is the state transition function
- ▶ $r(s, \mathbf{u}) : S \times \mathbf{U} \to \mathbb{R}$ is the reward function
- ▶ observations $z \in Z$ according to observation function $O(s, i) : S \times A \rightarrow Z$.
- $ightharpoonup \gamma$ is discount factor
- ▶ action-observation history for an agent *i* is $\tau^i \in T \equiv (Z \times U)^*$

MARL problem continued

$$Q^{\pi}(s_t, \mathbf{u}_t) = \mathbb{E}_{s_{t+1:\infty}, \mathbf{u}_{t+1:\infty}} \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k} | s_t, \mathbf{u}_t \right]. \tag{1}$$

The goal of the problem is to find the optimal action value function Q^* and the corresponding policy π^* .

Decentralisability

▶ Asserts that $\exists q_i$, such that $\forall s$, **u**:

$$\underset{\mathbf{u}}{\arg\max}\,Q^*(s,\mathbf{u}) = \left(\arg\max_{u^1}\,q_1(s,u^1)\ldots\arg\max_{u^n}\,q_n(s,u^n)\right)',$$

Where q_i are agent utilities.

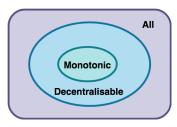


Figure 1: Classification of MARL problems.

Existing methods

- Several algorithms have been proposed which ensure decentralisability though structural constraints
- ▶ QMIX uses monotonic transformations on q_i , $\frac{\partial Q_{qmix}(s, \mathbf{u})}{\partial q_i(s, u^i)} \ge 0$
- ▶ VDN uses sum of utilities $Q_{vdn}(s, \mathbf{u}) = \sum_i q_i(s, u^i)$
- ▶ QTRAN: poses the decentralisation problem as optimisation with $\mathcal{O}(|S||U|^n)$ constraints and relaxes for tractability.
- IQL approximates by treating as an independent single agent problem.

Problems with existing methods

- Existing methods do not facilitate committed exploration
- Imposing structural constraints on the hypothesis learnt can induce suboptimality (all existing methods suffer from this)
- Structural constraints interfere with exploration
- Use latent space to address the above problems! (MAVEN)

Analysis

Definition (Non-monotonicity)

For any state $s \in S$ and agent $i \in \mathcal{A}$ given the actions of the other agents $u^{-i} \in U^{n-1}$, the Q-values $Q(s,(u^i,u^{-i}))$ form an ordering over the action space of agent i. Define $C(i,u^{-i}):=\{(u^i_1,...,u^i_{|U|})|Q(s,(u^i_j,u^{-i}))\geq Q(s,(u^i_{j+1},u^{-i})),j\in\{1,\ldots,|U|\},u^i_j\in U,j\neq j'\implies u^i_j\neq u^i_{j'}\},$ as the set of all possible such orderings over the action-values. The joint-action value function is **non-monotonic** if $\exists i\in\mathcal{A},u^{-i}_1\neq u^{-i}_2$ s.t. $C(i,u^{-i}_1)\cap C(i,u^{-i}_2)=\varnothing.$

Example Non-Monotonic payoff

Table 1: (a) An example of a non-monotonic payoff matrix, (b) QMIX values under uniform visitation.

	Α	В	С	_	Α	В	С
Α	10.4	0	10	Α	6.08	6.08	8.95
В	0	10	10	В	6.00	5.99	8.87
С	10	10	10	C	8.99	8.99	11.87
		(a)		•		(b)	

QMIX analysis: Uniform visitation

Theorem (Uniform visitation QMIX)

For n player, $k \geq 3$ action matrix games $(|\mathcal{A}| = n, |\mathcal{U}| = k)$, under uniform visitation; Q_{qmix} learns a δ -suboptimal policy for any time horizon T, for any $0 < \delta \leq R \Big[\sqrt{\frac{a(b+1)}{a+b}} - 1 \Big]$ for the payoff matrix M (n dimensional) given by the template below, where $b = \sum_{s=1}^{k-2} \binom{n+s-1}{s}$, $a = k^n - (b+1)$, R > 0:

$$\begin{bmatrix} R+\delta & 0 & \dots & R \\ 0 & & \ddots & & \vdots \\ R & \dots & & R \end{bmatrix}$$

QMIX analysis: ϵ greedy

Theorem (ϵ -greedy visitation QMIX)

For n player, $k \geq 3$ action matrix games, under ϵ -greedy visitation $\epsilon(t)$; Q_{qmix} learns a δ -suboptimal policy for any time horizon T with probability $\geq 1 - \left(\exp(-\frac{Tv^2}{2}) + (k^n - 1)\exp(-\frac{Tv^2}{2(k^n - 1)^2})\right) \text{, for any}$ $0 < \delta \leq R \left[\sqrt{a\left(\frac{vb}{2(1 - v/2)(a + b)} + 1\right)} - 1\right] \text{ for the payoff matrix}$

given by the template above, where $b = \sum_{s=1}^{k-2} {n+s-1 \choose s}$, $a = k^n - (b+1)$, R > 0 and $v = \epsilon(T)$.

MAVEN: Multi-Agent Variational Exploration

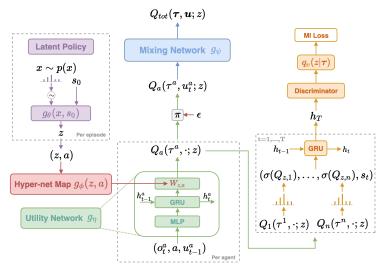


Figure 2: Architecture for MAVEN.

MAVEN

Fixing z gives a joint action-value function $Q(\mathbf{u}, \mathbf{s}; z, \phi, \eta, \psi)$ which implicitly defines a greedy deterministic policy $\pi_{\mathcal{A}}(\mathbf{u}|\mathbf{s}; z, \phi, \eta, \psi)$. This gives the corresponding Q-learning loss:

$$\mathcal{L}_{QL}(\phi, \eta, \psi) = \mathbb{E}_{\pi_{\mathcal{A}}}[(Q(\mathbf{u}_t, s_t; z) - [r(\mathbf{u}_t, s_t))]$$
 (3)

$$+\gamma \max_{\mathbf{u}_{t+1}} Q(\mathbf{u}_{t+1}, s_{t+1}; z)])^{2}],$$
 (4)

► The hierarchical policy objective for z, freezing the parameters ψ, η, ϕ is given by:

$$\mathcal{J}_{RL}(\theta) = \int \mathcal{R}(\tau_{\mathcal{A}}|z) p_{\theta}(z|s_0) \rho(s_0) dz ds_0. \tag{5}$$

Encouraging diverse behaviour with MI

Mutual Information loss

$$\mathcal{J}_{MI} = \mathcal{H}(\sigma(\tau)) - \mathcal{H}(\sigma(\tau)|z) = \mathcal{H}(z) - \mathcal{H}(z|\sigma(\tau)), \quad (6)$$

Tractable lower bound given by:

$$\mathcal{J}_{MI} \ge \mathcal{H}(z) + \mathbb{E}_{\sigma(\tau),z}[\log(q_v(z|\sigma(\tau)))]. \tag{7}$$

- The variational approximation can also be seen as a discriminator/critic that induces an auxiliary reward field $r_{aux}^z(\tau) = \log(q_v(z|\sigma(\tau))) \log(p(z))$ on the trajectory space.
- Overall objective becomes:

$$\max_{\upsilon,\phi,\eta,\psi,\theta} \mathcal{J}_{RL}(\theta) + \lambda_{MI} \mathcal{J}_{V}(\upsilon,\phi,\eta,\psi) - \lambda_{QL} \mathcal{L}_{QL}(\phi,\eta,\psi), \quad (8)$$

Experiments

- ► Toy domain: Matrix games
- ► StarCraft-2

m-step matrix games

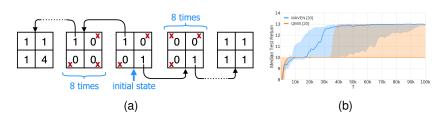


Figure 3: (a) m-step matrix game for m = 10 case (b) median return of MAVEN and QMIX method on 10-step matrix game for 100k training steps, averaged over 20 random initializations (2nd and 3rd quartile is shaded).

StarCraft-2 SMAC

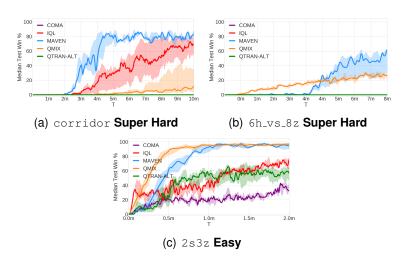


Figure 4: The performance of various algorithms on three SMAC maps.

StarCraft-2 Exploration experiments

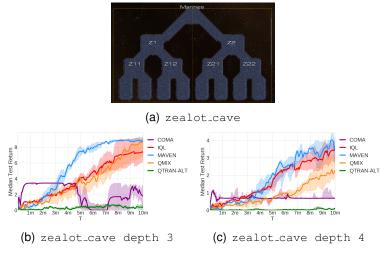
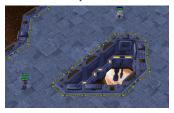
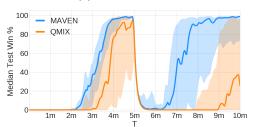


Figure 5: State exploration and policy robustness

StarCraft-2 Robustness experiments



(a) 2_corridors



(b) Shorter corridor closed at 5 mil steps

Figure 6: State exploration and policy robustness

Representation capacity



Figure 7: tsne plot for s_0 labelled with z, 16 categories, 3s5z initial (left) to final (right)

Ablations

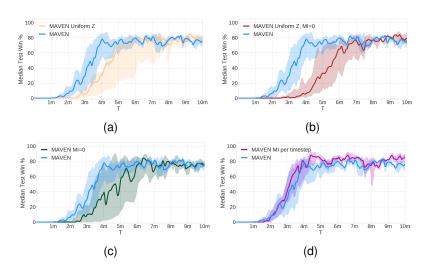


Figure 8: Figs. 8(a) and 8(b) investigate uniform hierarchical policy. Figs. 8(c) and 8(d) investigate effects of MI loss.

Questions?

Thanks!