MAVEN: Multi-Agent Variational Exploration

Anuj Mahajan

WhiRL, University of Oxford

Joint work with Tabish, Mika and Shimon

MARL

- **Cooperative** *multi-agent reinforcement learning* (MARL) is a key tool for addressing many real-world problems
- \blacktriangleright Robot swarm, autonomous cars
- \blacktriangleright Key challenges: CTDE
	- \triangleright Scalability due to exponential state action space blowup
	- \blacktriangleright Decentralised execution

Background

- \triangleright Dec-POMDP defined as a tuple $G = \langle S, U, P, r, Z, O, n, \gamma \rangle$
- \blacktriangleright *S* is the set of states
- \triangleright *U* the set of available actions per agent
- \triangleright agents $i \in \mathcal{A} \equiv \{1, ..., n\}$
- \blacktriangleright joint action $\mathbf{u} \in \mathbf{U} \equiv U^n$
- \blacktriangleright $P(s'|s, u) : S \times U \times S \rightarrow [0, 1]$ is the state transition function
- \blacktriangleright $r(s, u) : S \times U \rightarrow \mathbb{R}$ is the reward function
- \triangleright observations $z \in Z$ according to observation function $O(s, i)$: $S \times A \rightarrow Z$.
- \blacktriangleright γ is discount factor
- ▶ action-observation history for an agent *i* is $\tau^i \in \mathcal{T} \equiv (Z \times U)^*$

MARL problem continued

$$
Q^{\pi}(\mathbf{s}_t, \mathbf{u}_t) = \mathbb{E}_{\mathbf{s}_{t+1:\infty}, \mathbf{u}_{t+1:\infty}} \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k} | \mathbf{s}_t, \mathbf{u}_t \right].
$$
 (1)

The goal of the problem is to find the optimal action value function Q^* and the corresponding policy π^* .

Decentralisability

 \blacktriangleright Asserts that $\exists q_i$, such that $\forall s, u$:

 $\mathbf{u} = \left(\arg \max_{u^1} q_1(s, u^1) \dots \arg \max_{u^n} q_n(s, u^n)\right),$ (2)

Where *qi* are agent utilities.

Figure 1: Classification of MARL problems.

Existing methods

- \triangleright Several algorithms have been proposed which ensure decentralisability though structural constraints
- \blacktriangleright QMIX uses monotonic transformations on q_i , $\frac{\partial Q_{qmi\mathbf{x}}(\mathbf{s},\mathbf{u})}{\partial q_i(\mathbf{s},\mathbf{u}^i)} \geq 0$
- \blacktriangleright VDN uses sum of utilities $Q_{\mathsf{vdn}}(\mathbf{s},\mathbf{u}) = \sum_i q_i(\mathbf{s},\mathbf{u}^i)$
- \triangleright QTRAN: poses the decentralisation problem as optimisation with $\mathcal{O}(|\mathcal{S}||\mathcal{U}|^n)$ constraints and relaxes for tractability.
- \blacktriangleright IQL approximates by treating as an independent single agent problem.

Problems with existing methods

- I Existing methods do not facilitate *committed exploration*
- \triangleright Imposing structural constraints on the hypothesis learnt can induce suboptimality (all existing methods suffer from this)
- \triangleright Structural constraints interfere with exploration
- \triangleright Use latent space to address the above problems! (MAVEN)

Analysis

Definition (Non-monotonicity)

For any state $s \in S$ and agent $i \in A$ given the actions of the other agents $u^{-i} \in U^{n-1}$, the *Q*-values $Q(s, (u^i, u^{-i}))$ form an ordering over the action space of agent *i*. Define $C(i, u^{-i}) := \{ (u'_1, ..., u'_{|U|}) | Q(s, (u'_j, u^{-i})) \geq Q(s, (u'_{j+1}, u^{-i})), j \in$ $\{1,\ldots,|\mathcal{U}|\},u_j^i\in \mathcal{U},j\neq j'\implies u_j^i\neq u_{j'}^i\},$ as the set of all possible such orderings over the action-values. The joint-action value function is **non-monotonic** if $\exists i \in \mathcal{A}, u_1^{-i} \neq u_2^{-i}$ s.t. $C(i, u_1^{-i}) \cap C(i, u_2^{-i}) = \emptyset$.

Example Non-Monotonic payoff

Table 1: (a) An example of a non-monotonic payoff matrix, (b) QMIX values under uniform visitation.

QMIX analysis : Uniform visitation

Theorem (Uniform visitation QMIX)

For n player, k \geq 3 *action matrix games* $(|A| = n, |U| = k)$, *under uniform visitation; Qqmix learns a -suboptimal policy for* any time horizon T, for any $0 < \delta \leq R\Big[\sqrt{\frac{a(b+1)}{a+b}}-1\Big]$ for the *payoff matrix M (n dimensional) given by the template below,* $where b = \sum_{s=1}^{k-2} {\binom{n+s-1}{s}}, a = k^n - (b+1), R > 0.$

QMIX analysis: ϵ greedy

Theorem (ϵ -greedy visitation QMIX)

For n player, k \geq 3 *action matrix games, under* ϵ -greedy *visitation* $\epsilon(t)$ *;* Q_{amix} *learns a* δ -suboptimal policy for any time *horizon T with probability*

$$
\geq 1 - \left(\exp(-\frac{Tv^2}{2}) + (k^n - 1)\exp(-\frac{Tv^2}{2(k^n - 1)^2})\right), \text{ for any} \\ 0 < \delta \leq R \left[\sqrt{a\left(\frac{vb}{2(1 - v/2)(a+b)} + 1\right)} - 1\right] \text{ for the payoff matrix} \\ \text{given by the template above, where } b = \sum_{s=1}^{k-2} {n+s-1 \choose s}, \\ a = k^n - (b+1), R > 0 \text{ and } v = \epsilon(T).
$$

MAVEN: Multi-Agent Variational Exploration

Figure 2: Architecture for MAVEN.

MAVEN

Fixing *z* gives a joint action-value function $Q(\mathbf{u}, \mathbf{s}; z, \phi, \eta, \psi)$ which implicitly defines a greedy deterministic policy $\pi_A(\mathbf{u}|\mathbf{s}; z, \phi, \eta, \psi)$. This gives the corresponding *Q*-learning loss:

$$
\mathcal{L}_{QL}(\phi, \eta, \psi) = \mathbb{E}_{\pi_{\mathcal{A}}}[(Q(\mathbf{u}_t, \mathbf{s}_t; z) - [r(\mathbf{u}_t, \mathbf{s}_t)] \qquad (3)
$$

$$
+\gamma \max_{\mathbf{u}_{t+1}} Q(\mathbf{u}_{t+1}, s_{t+1}; z)])^2], \qquad (4)
$$

 \blacktriangleright The hierarchical policy objective for *z*, freezing the parameters ψ , η , ϕ is given by:

$$
\mathcal{J}_{\mathsf{RL}}(\theta) = \int \mathcal{R}(\tau_{\mathcal{A}}|z) p_{\theta}(z|s_0) \rho(s_0) dz ds_0.
$$
 (5)

Encouraging diverse behaviour with MI

 \blacktriangleright Mutual Information loss

$$
\mathcal{J}_{MI} = \mathcal{H}(\sigma(\tau)) - \mathcal{H}(\sigma(\tau)|z) = \mathcal{H}(z) - \mathcal{H}(z|\sigma(\tau)), \quad (6)
$$

 \blacktriangleright Tractable lower bound given by:

$$
\mathcal{J}_{MI} \geq \mathcal{H}(z) + \mathbb{E}_{\sigma(\tau),z}[\log(q_v(z|\sigma(\tau)))]. \tag{7}
$$

- \triangleright The variational approximation can also be seen as a discriminator/critic that induces an auxiliary reward field $r^z_{\textit{aux}}(\boldsymbol{\tau}) = \log (q_v(z|\sigma(\boldsymbol{\tau}))) - \log(p(z))$ on the trajectory space.
- \triangleright Overall objective becomes:

$$
\max_{v,\phi,\eta,\psi,\theta} \mathcal{J}_{\mathsf{RL}}(\theta) + \lambda_{\mathsf{MI}} \mathcal{J}_{\mathsf{V}}(v,\phi,\eta,\psi) - \lambda_{\mathsf{QL}} \mathcal{L}_{\mathsf{QL}}(\phi,\eta,\psi), \quad (8)
$$

Experiments

\blacktriangleright StarCraft-2

m-step matrix games

Figure 3: (a) *m*-step matrix game for $m = 10$ case (b) median return of MAVEN and QMIX method on 10-step matrix game for 100k training steps, averaged over 20 random initializations (2nd and 3rd quartile is shaded).

StarCraft-2 SMAC

Figure 4: The performance of various algorithms on three SMAC maps.

StarCraft-2 Exploration experiments

Figure 5: State exploration and policy robustness

StarCraft-2 Robustness experiments

(a) 2 corridors

Figure 6: State exploration and policy robustness

Representation capacity

Figure 7: tsne plot for s_0 labelled with z, 16 categories, 3s5z initial (left) to final (right)

Ablations

Figure 8: Figs. 8(a) and 8(b) investigate uniform hierarchical policy. Figs. 8(c) and 8(d) investigate effects of MI loss.

Thanks! Questions?