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MARL

» Cooperative multi-agent reinforcement learning (MARL) is a
key tool for addressing many real-world problems

» Robot swarm, autonomous cars
» Key challenges: CTDE
» Scalability due to exponential state action space blowup

» Decentralised execution



Background
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Dec-POMDP defined as atuple G= (S, U,P,r,Z,0,n,~)
S is the set of states

U the set of available actions per agent

agentsic A={1,...,n}

joint actionu € U = U"

P(s’|s,u) : S x U x S — [0, 1] is the state transition function
r(s,u) : S x U — R is the reward function

observations z € Z according to observation function
O(s,i): Sx A— Z.

~ is discount factor

action-observation history for an agent i is
e T=(ZxU)*



MARL problem continued

o
Q7 (st,ut) = Es;qo ity 1.0 [Z ’YkrtJrk‘Styut] : (1)
k=0

The goal of the problem is to find the optimal action value
function Q* and the corresponding policy 7*.



Decentralisability

» Asserts that 3g;, such that Vs, u:

/

arg max Q*(s,u) = (arg maxyi g1 (s, u') ... arg maxys gn(s, u")) ,
u

(@)

Where q; are agent utilities.
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Figure 1: Classification of MARL problems.



Existing methods

» Several algorithms have been proposed which ensure
decentralisability though structural constraints

» QMIX uses monotonic transformations on g, % >0
» VDN uses sum of utilities Qygn(s,u) =>; qi(s, u')

» QTRAN: poses the decentralisation problem as optimisation
with O(|S||U|") constraints and relaxes for tractability.

» IQL approximates by treating as an independent single
agent problem.



Problems with existing methods

» Existing methods do not facilitate committed exploration

» Imposing structural constraints on the hypothesis learnt can
induce suboptimality (all existing methods suffer from this)

» Structural constraints interfere with exploration

» Use latent space to address the above problems! (MAVEN)



Analysis

Definition (Non-monotonicity)

For any state s € S and agent i € A given the actions of the
other agents u~' € U™, the Q-values Q(s, (v, u~")) form an
ordering over the action space of agent /. Define '
C(i,u™) == {(Uf .., Ul IQ(s: (U, u™")) = Q(8, (U] 4, u™")),f €
{1, UL U eUj#] = u+ uj,},asthesetofall
possible such orderings over the action-values. The joint-action
value function is non-monotonic if 3i € A, u;’ # u,’ s.t.
Cli,uy\nC(i,u;") = @.



Example Non-Monotonic payoff

Table 1: (a) An example of a non-monotonic payoff matrix, (b) QMIX
values under uniform visitation.

A B C A B C

A 104 0 | 10 A | 6.08) 6.08 8.95

B| 0 10|10 B | 6.00 5.99| 8.87

10 | 10 | 10 8.99 8.99 11.87
(a) (b)

O

O




QMIX analysis : Uniform visitation

Theorem (Uniform visitation QMIX)

For n player, k > 3 action matrix games (|A| = n, |U| = k),
under uniform visitation; Qqumix learns a é-suboptimal policy for

any time horizon T, forany 0 < § < R[ ab+l) _ 1} for the

a+b
payoff matrix M (n dimensional) given by the template below,
where b= Y572 ("5, a=k" — (b+1), R > 0:

S

R+6 0 ... R
0

R ... R



QMIX analysis: € greedy

Theorem (e-greedy visitation QMIX)

For n player, k > 3 action matrix games, under e-greedy
visitation €(t); Qqmix learns a j-suboptimal policy for any time
horizon T with probability

> 1— ((exp(=T8) + (K" = 1) exp(~ zn5) ) , for any

0<é< H[\/a<2(1v72b)(a+b) + 1) — 1] for the payoff matrix

given by the template above, where b = >"K~2 (M,

a=k"—(b+1),R>0andv =¢(T).



MAVEN: Multi-Agent Variational Exploration
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Figure 2: Architecture for MAVEN.
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MAVEN

» Fixing z gives a joint action-value function Q(u, s; z, ¢, n, )
which implicitly defines a greedy deterministic policy
mA(UlS; Z, $,m,1). This gives the corresponding Q-learning
loss:

Lai(o,n,v) =Ex, [(Qug, st; Z2) — [r(uy, St) 3)
+ max Q(Ut41, St41; 2)])?], (4)

» The hierarchical policy objective for z, freezing the
parameters 1, n, ¢ is given by:

Tr(0) = / R(ral2)po(2]50)p(s0)dzdso.  (5)



Encouraging diverse behaviour with Ml

» Mutual Information loss

T = H(o(7)) = H(o(r)|2) = H(z) - H(Zlo(r)), ()

» Tractable lower bound given by:
Im > H(2) + Eo(r) 2 [log(qu(z]o(T)))]- (7)

» The variational approximation can also be seen as a
discriminator/critic that induces an auxiliary reward field
() = log(qu(2]o(7))) — log(p(2)) on the trajectory
space.

» Overall objective becomes:

, nax HJRL(Q) + i Iv(v, é,m,%) — AarLar(d,n, ), (8)



Experiments

» Toy domain: Matrix games

» StarCraft-2



m-step matrix games
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Figure 3: (a) m-step matrix game for m = 10 case (b) median return of
MAVEN and QMIX method on 10-step matrix game for 100k training
steps, averaged over 20 random initializations (2nd and 3rd quartile is
shaded).



StarCraft-2 SMAC
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Figure 4: The performance of various algorithms on three SMAC maps.



StarCraft-2 Exploration experiments
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Figure 5: State exploration and policy robustness



StarCraft-2 Robustness experiments
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Figure 6: State exploration and policy robustness



Representation capacity
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Figure 7: tsne plot for sy labelled with z, 16 categories, 3s5z initial
(left) to final (right)



Ablations
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Figure 8: Figs. 8(a) and 8(b) investigate uniform hierarchical policy.
Figs. 8(c) and 8(d) investigate effects of Ml loss.



Thanks!
Questions?
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