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Tesseract motivation

» Cooperative Multi Agent Reinforcement Learning (MARL)
suffers from action space blow-up.

» For value-based methods: Poses challenges in accurately
representing the optimal value function, thus inducing
suboptimality.

» For policy gradient methods: Renders critic ineffective and
exacerbates the problem of the /agging critic.

» Similar challenges for model-based methods.



Tesseract idea

» Main idea : A framework to exploit tensor structure in MARL
problems for sample efficient learning.

» Q-function seen as a tensor where the modes correspond
to action spaces of different agents.

» Applicable to any factorizable action-space



Background Multi Agent Reinforcement Learning
(MARL)

Notation:
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S is the set of states

U the set of available actions per agent

agentsie A={1,...,n}

joint actionu e U = U"

P(s'|s,u) : S x U x § — [0, 1] is the state transition function
r(s,u) : S x U — R is the reward function

observations z € Z according to observation distribution
O(s): Sx A— P(2).

~ is discount factor

action-observation history for an agent / is
e T=(ZxU)*



MARL problem continued
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The goal of the problem is to find the optimal action value
function Q* and the corresponding policy 7*.

Figure 1: Example MARL scenario



Settings in Multi Agent Reinforcement Learning

M-POMDP

Figure 2: MARL settings w.r.t observability

» MMDP : (S,U,P,r,n,~) Bijectvemap O: S — 2

» M-ROMDP : (S, U,P,r,Z, O, n,~), where we require that
the joint observation space is partitioned w.r.t. Sie.
Vsy,8p € SAze Z,P(z]s1) > 0AS1 # s, = P(z]s2) =0.

» M-POMDP : (S, U, P,r,Z,0,n,~)

» Note that for latter two we assume |Z| >> |S|.



Tensors intro

» Tensors are high dimensional analogues of matrices

» Tensor decomposition, in particular, generalize the concept
of low-rank matrix factorization

> Notation * to represent tensors

> An order ntensor T has nindex sets l;,vj € {1..n} and has
elements T(e),Ve € xzl;
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Figure 3: Left: Tensor diagram for an order 3 tensor T. Right:
Contraction between T', T2 on common index sets I, .



Tensors intro

» Tensor contraction: For any two tensors 71 and 72 with
In :AI1 N Z? we define the contraction operation as
T'oT2(e1,62) = Yocuy, T'(e1,€) - TP(e2,€), 0 €
Xz )

> Atensor T can be factorized using a (rank—k) CP

decomposition into a sum of k vector outer products
(denoted by ®), as,

k
T=> wea"uy,ic{t.n}|uyla=1 (1)

r=1



Tensorising the Q-function

» Given a multi-agent problem G, let 9 = {Q : S x U" — R}
be the set of real-valued functions on the state-action space

» Focus on the Curriedform Q: S — U" — R, Q € Q so that
Q(s) is an order n tensor

» Algorithms in Tesseract operate directly on the curried form
and preserve the structure implicit in the Q tensor.



Tensorised Bellman Equation

» Components of the underlying MARL problem can be seen
as tensors given a state (denoted with %).

» Modes correspond to action spaces of different agents

Figure 4: Tensor Bellman Equation for n agents. There is an edge for
each agent i € A in the corresponding nodes Q™, U™, R, P with the
index set U'.



Algorithm 1 Model-based Tesseract

1: Initialise rank k, = = (7')7 and Q: Theorem 3

2: Initialise model parameters P, R

3: Learning rate < «,D < {}

4: for each episodic iteration i do

5: Do episode rollout 7; = {(st, Uy, 1, S11)5} using =

6: D+ DU{r}

7. Update P, R using CP-Decomposition on moments from
D (Theorem 3)

8. for each internal iteration j do

9: Q«TQ

10:  end for

11:  Improve 7 using Q
12: end for

N

13: Return w, Q




Theorems for MMDP

Theorem (Bounding rank of Q)

For a finite MMDP under mild assumptions, the action-value
tensor satisfies rank(Q™(s)) < ki + k2|S|,Vs € S, V.
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Corollary

For all k > ki + ko|S|, the procedure Q;. 1 + N, T™Q; converges
to Q™ for all Qg, .



Theorems for MMDP

» Rank sufficient approximation k > k1, k>

Theorem (Model based estimation of R, P error bounds)

Given any e > 0,1 > § > 0, for a policy = with the policy tensor
satisfying w(u|s) > A, where

CuEk(wg'™)* log(| U))* log(3KI A(s)l /)
U2 (W)

A = max
S

and Cy is a problem dependent positive constant. There exists
No which is O(|U|?) and polynomial in 1,1, k and relevant
spectral properties of the underlying MDP dynamics such that
for samples > Ny, we can compute the estimates R(s), P(s, §')
such that w.p. > 1 —9,

IIR(s) — R(S)||r < e, ||P(s,s) — P(s,8)||f < e, Vs, 8 €8.



Theorems for MMDP

Theorem (Error bound on policy evaluation)

Given a behaviour policy ©, satisfying the conditions in the
theorem above and executed for steps > Ny, for any policy © the
model based policy evaluation Qg g satisfies:

iy s g
|QFR(s: @) — QF g(s, @)l <(|1 —f|+ fISIe)iz(1 7
€ n
+ T _V,V(s,a) eSxU

1 1
where TFe[S] <f< =9




Comments

» Similar results can be obtained for M-POMDPs and
M-ROMDPs with some conditions on the observation
distribution (no information loss).

» O(kn|U||S|?) parameters for the model based approach, for
large/continuous state-action spaces the tensor structure
can be embedded in a model free manner (next)



Model free Tesseract

Joint representation

A) =
<T74> Q

Joint action
=

L6

Figure 5: Tesseract architecture

> The joint action-value estimate of the tensor Q(s) by the
central critic is:

k
Q@ (s)~ > w @" gy (s"),i € {1.n} )

r=1



Algorithm 2 Model free Tesseract

Initialise parameter vectors 6, ¢, n
Learning rate < a,D + {}
for each episodic iteration i do
Do episode rollout 7; = {(st, U, 11, St11)5 } using
D+ DU {7’,’}
Sample batch B C D.
Compute empirical estimates for L1p, Jy
¢ <+ ¢ — aV,L1p (Rank k projection step)
n < n — oV, L7p (Action representation update)
0 < 0 + aVyJp (Policy update)
end for
Return =, Q




StarCraft II: SMAC Experiments
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Figure 6: Performance of different algorithms on Easy and Hard
SMAC scenarios: TAC, QMIX, VDN, FQL, QL.



StarCraft II: SMAC Experiments
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Figure 7: Performance of different algorithms on Super Hard SMAC
scenarios: TAC, QMIX, VDN, FQL, IQL.
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