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Abstract

We present SoftDICE, which achieves state-of-the-art performance for imitation
learning. SoftDICE fixes several key problems in ValueDICE [17], an off-policy
distribution matching approach for sample-efficient imitation learning. Specifically,
the objective of ValueDICE contains logarithms and exponentials of expectations,
for which the mini-batch gradient estimate is always biased. Second, ValueDICE
regularizes the objective with replay buffer samples when expert demonstrations
are limited in number, which however changes the original distribution matching
problem. Third, the re-parametrization trick used to derive the off-policy objec-
tive relies on an implicit assumption that rarely holds in training. We leverage a
novel formulation of distribution matching and consider an entropy-regularized
off-policy objective, which yields a completely offline algorithm called SoftDICE.
Our empirical results show that SoftDICE recovers the expert policy with only
one demonstration trajectory and no further on-policy/off-policy samples. Soft-
DICE also stably outperforms ValueDICE and other baselines in terms of sample
efficiency on Mujoco benchmark tasks.

1 Introduction

The recent success of reinforcement learning (RL) in many domains [19, 26] showcases the great
potential of applying this family of learning methods to real-world applications. A key prerequisite
for RL is the ability to design a reward function that specifies what agent behavior is preferable.
However, in many real-world applications, designing a reward function is prohibitively difficult, as it
requires balancing many competing factors. For example, when training a physical robot to navigate,
it can be challenging to design a reward function that properly characterizes human-like navigation.
By contrast, demonstrations are often readily available in such real-world applications. Imitation
learning studies exactly this problem – given a limited number of expert demonstrations, learn an
optimal policy without any further access to the expert policy or reinforcement signals of any kind.

Recently, distribution matching has gained popularity in imitation learning and shown state-of-the-art
performance in many benchmark tasks. Specifically, distribution matching approaches interpret
state-action pairs provided in the expert demonstrations as sample points from a target distribution.
Imitation learning is then framed as learning a policy that minimizes a divergence between this target
distribution and the distribution induced by the policy. The optimization process, reminiscent of
Generative Adversarial Nets [9], often consists of two steps [12, 8, 31]: first, estimate the density ratio
of state-action pairs between the target distribution and the learned policy; second, use these ratios as
reinforcement signals in standard RL algorithms to update the learned policy. The main limitation
of this formulation is that estimating those density ratios typically requires on-policy samples that
are generated by rolling out the learned policy. Consequently, every update to the policy requires
new interactions with the environment from the learned policy, which precludes many real-world
applications where interactions are expensive and limited. One recent study, ValueDICE [17], relaxes
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the on-policy constraint by using the change of variable trick [20], which then yields a completely
off-policy objective and a practical algorithm with state-of-the-art sample efficiency.

However, ValueDICE has several key problems that can affect its empirical performance and conver-
gence guarantees. First, the off-policy objective in ValueDICE contains logarithms and exponentials
of expectations (i.e., log/exp applied to an expectation), which makes any mini-batch estimate of
the gradient biased [4, 17]. Second, the objective actually adopted in the ValueDICE algorithm is
different from the original off-policy one and thus provides no guarantee that the expert policy is
learned. Third, the change of variable used to derive the off-policy objective implicitly assumes that
the Markov chain induced by the learned policy is always ergodic, which rarely holds during training
as the sampling may be terminated early by the environment reset.

In this paper, we propose a new objective based on the Earth-Mover Distance (EMD) that eliminates
all the aforementioned problems while still remaining off-policy. Using EMD draws connections to
the classic feature matching approaches in inverse reinforcement learning [1, 23, 33] and the resulting
intermediate objective can be interpreted as feature expectation matching (FEM) with respect to
arbitrary learned features. This connection also motivates the use of the principle of maximum
entropy to regularize training when the number of demonstrations is extremely small. Moreover, the
change of variable trick adopted in ValueDICE [17] can be rigorously improved by a more practical
and unbiased off-policy estimate. The new resulting entropy-regularized objective naturally yields a
practical algorithm, SoftDICE that is completely offline and requires no further on-policy or off-policy
samples in training. Our empirical results show that SoftDICE can successfully learn the expert policy
with only one demonstration trajectory and no further interactions from the environment. Furthermore,
SoftDICE stably outperforms ValueDICE and other baselines in terms of sample efficiency across
different continuous control tasks in the Mujoco benchmark environment.

2 Background

Notation We consider an infinite-horizon Markov Decision process (MDP) with a finite state space
S , a finite action spaceA, a transition kernel p : S×A×S → [0, 1], a reward function r : S×A → R
which is unknown, a discount factor γ ∈ [0, 1), and an initial state distribution p0 from which s0 is
sampled. Π is the class of policies, π : A× S → [0, 1] that the learner is considering.

For a policy π ∈ Π, define its state-action distribution as d(s, a) = (1− γ)
∑∞
t=0 γ

tdt(s, a), where
dt(s, a) = P (st = s, at = a|s0 ∼ p0,∀i < t, ai ∼ π(·|si), si+1 ∼ p(·|si, ai). A basic result
from [22] is that the set of valid state-action distribution Ω , {dπ : π ∈ Π} can be written as a
feasible set of affine constraints: if p0(s) is the distribution of starting states (p0(s) > 0∀s ∈ S) and
p(s′|s, a) is the transition model, then

Ω =
{
d ≥ 0 :

∫
a

d(s, a)da = (1− γ)p0(s) + γ

∫
s′,a′

p(s|s′, a′)d(s′, a′)ds′da′, ∀s ∈ S
}
. (1)

Intuitively, this constraint states that a feasible state-action distribution is a stationary distribution
induced by an ergodic (i.e., irreducible and aperiodic) Markov chain with transition probability
(1− γ)p0(s) + γp(s|s′, a′)2. Furthermore, there is one-to-one correspondence between Π and Ω:

Proposition 1. [27] If d(s, a) is feasible by (1), then d is the state-action distribution for π(a|s) ,
d(s, a)/

∑
a d(s, a),∀(s, a), and π is the only policy whose state-action distribution is d.

Proposition 1 forms the foundation of a distribution matching approach for imitation learning that
learns π by minimizing the divergence between state-action distribution of the policy dπ(s, a) and
the empirical distribution dE(s, a) of state-action pairs in the demonstration [12, 14, 17, 8].

The problem formulation in ValueDICE is based on the KL-divergence. Specifically, it adopts the
Donker-Varadhan representation [6] of KL-divergence and formulates the objective as follows,

DKL(dπ||dE) = max
x:S×A→R

− logE(s,a)∼dE
[
ex(s,a)

]
+ E(s,a)∼dπ

[
x(s, a)

]
. (2)

To make the objective practical for off-policy learning, ValueDICE takes inspiration from derivations
used in DualDICE [20], and performs the following change of variable:

x(s, a) = ν(s, a)− Bπν(s, a), (3)
2We consider the Markov chain induced by simulating an MDP with discounted reward.
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where Bπ is the expected Bellman operator with respect to policy π and zero reward:

Bπν(s, a) = γEs′∼p(·|s,a),a′∼π(·|s′)[ν(s′, a′)]. (4)

With this change of variable, the second expectation telescopes and reduces to an expectation over
initial states:

max
ν:S×A→R

− logE(s,a)∼dE(s,a)

[
eν(s,a)−Bν(s,a)

]
+ (1− γ)Es0∼p0,a0∼π(·|s0)

[
ν(s0, a0)

]
. (5)

In the practical algorithm for a limited number of demonstrations, ValueDICE considers an alternative
objective, with a controllable regularization based on experiences in the replay buffer:

min
π

max
ν:S×A→R

− logE(s,a)∼dmix(s,a)

[
eν(s,a)−Bν(s,a)

]
+ (1− α)(1− γ)Es0∼p0,a0∼π(·|s0)

[
ν(s0, a0)

]
+ αE(s,a)∼dRB

[
ν(s, a)− Bπν(s, a)

]
, (6)

where dmix(s, a) is the mixed distribution dmix(s, a) = (1− α)dE + αdRB and α is the controllable
regularizer. The objective in Equation (6) is shown to be equivalent to the KL-divergence between
two mixed distributions, DKL

(
(1− α)dπ + αdRB||(1− α)dE + αdRB

)
.

3 Problems with ValueDICE

In this section, we identify three problems with ValueDICE.

3.1 Logorithms and exponentials of expectations

As pointed out in the original paper [17], the objective (6) of ValueDICE has two expectations that
cannot be estimated without bias from mini-batches of samples. To be specific, the first expectation
has a logarithm applied to it, which makes mini-batch estimate of the gradient of this expectation
biased. The second expectation over the environment transition p(·|s, a, ) computes Bπν(s, a) and
has a log-exp applied to it, so its mini-batch approximated gradient estimate is also biased in
general. These two problematic expectation terms stem from the use of KL-divergence and its
special representation. In the original paper, this divergence is used to draw connections between
reinforcement learning methods and distribution matching approaches. Namely, the density ratios
d(s,a)
d∗(s,a) can be interpreted as the reward signals and the distribution matching is thus to maximize
the sum of all density ratios between two mixed distribution [17]. We show below that, instead of
using a divergence, using another measure leads to an objective that can be more easily optimized
and actually generalizes the classic feature expectation matching approaches [23, 1, 33].

3.2 Mixture of samples

The ValueDICE paper also points out that the number of expert samples may be small and lack
diversity, which could potentially hamper policy learning. ValueDICE thus considers mixing expert
demonstrations with off-policy samples and instead minimizes the distance between two mixed
distributions, i.e., DKL

(
(1−α)dπ +αdRB||(1−α)dE +αdRB

)
[17]. Therefore, there is no guarantee

that the minimum ValueDICE converges to is the expert distribution. Indeed, according to the
convexity of the KL-divergence,DKL

(
(1−α)dπ+αdRB||(1−α)dE+αdRB

)
≤ (1−α)DKL(dπ||dE),

the objective in ValueDICE is only a lower bound of theDKL(dπ||dE). Thus, minimizing objective (6)
is weaker than minimizing objective (2), and does not guarantee that the learned policy recovers the
expert policy. Furthermore, the mixture of samples may not improve the overall performance of
ValueDICE. We show below that we can draw insights from feature expectation matching approaches
to develop a more effective way to mitigate the lack of diversity in the demonstrations.

3.3 Change of variable

While the change of variable in ValueDICE simplifies the objective (2), we show below that it
implicitly assumes that the Markov chain induced by the policy π is irreducible and aperiodic, and
the state-action distribution is stationary. In off-policy policy evaluation, for which such change of
variable was originally proposed [20], this assumption holds since the samples used for off-policy
evaluation are from unknown but stationary distributions. However, in the policy training of imitation
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learning when the environment can be reset whenever a done signal is triggered by some terminal
states, the induced Markov chain is not irreducible. As a result, E(s,a)∼dπ [ν(s, a)−Bπν(s, a)] is not
equivalent to (1− γ)E(s,a)∼d0 [ν(s, a)]. In the practical implementation, ValueDICE defined those
terminal states as the absorbing state, which has an extra dimension being set to one and all other
dimensions being set to zero, similarly as in [16]. Such special handling does not address the issue
caused by the change of variable because the bias is introduced by the value of ν at those terminal
states, not the states themselves, as we show in Section 4.3.

4 Theoretical Analysis and SoftDICE

To ease further analysis, we reformulate the affine constraints of Equation (1). By multiplying both
sides by π(a′|s′), we have

d(s′, a′) = (1− γ)d0(s′, a′) + γ

∫
s,a

π(a′|s′)p(s′|s, a)d(s, a)dsda ∀s′, a′, (7)

where d0(s, a) = p0(s)π(a|s). Imitation learning can then be formulated as distribution matching
with the above constraint [12]:

min
π

D
(
dπ(s, a), dE(s, a)

)
,

subject to dπ(s′, a′) = (1− γ)d0(s′, a′) + γ

∫
s,a

π(a′|s′)p(s′|s, a)dπ(s, a)dsda ∀s′, a′, (8)

where D is some distribution measure, e.g., KL or Jensen-Shannon divergence. The stationarity
constraint comes from Proposition 1 and describes that the Markov chain induced by the policy π
should always be stationary. In ValueDICE the use of KL-divergence introduces the logarithms and
exponentials of expectations. We can of course use other divergences, as suggested by [14, 8], but we
show below that alternatively we can use one statistical measure (not a divergence), which yields a
more feasible objective.

4.1 To remove logorithms and expontentials of expectations

Inspired by the Wasserstein GAN [2], we instead adopt the Earth-Mover distance (EMD) [2] and
consider its Kantorovich-Rubinstein dual form [30]:

min
π
D(dπ, dE) = min

π
max
||f ||L≤1

E(s,a)∼dE [f(s, a)]− E(s,a)∼dπ [f(s, a)], (9)

where the maximization is over all the 1-Lipschitz functions f : X → R. If we replace ||f ||L ≤ 1 for
||f ||K (consider K-Lipschitz for some constant K), then we end up with K · D(dπ, dE). Compared
to the ValueDICE objective, (9) has no exponential and logarithmic terms, and can be optimized with
any stochastic gradient descent methods, e.g., Adam [15].

4.2 To combat the sparsity of demonstrations

Before introducing our method, we first give intuition to help understand the above objective.
Expanding the expectation over the policy, we have E(s,a)∼dπ [f(s, a)] = Eπ

[∑∞
t=0 γ

tf(s, a)|St =

s,At = a
]
. If we interpret f(s, a) as a feature for (s, a), the objective in (9) generalizes the feature

expectation matching approaches in Apprenticeship Learning [1]. Specifically, denote the feature
expectations as µ(π, f) = E(s,a)∼dπ [f(s, a)], Equation (9) can be re-written as

min
π

max
||f |L≤1

[
µ(πE , f)− µ(π, f)

]
. (10)

Similar to apprenticeship learning, distribution matching with this formulation in effect reduces
imitation learning to finding a policy π that induces feature expectations µ(π, f) close to µ(πE , f)[28].
The difference is that distribution matching generalizes such feature expectation matching to be over
all Lipschitz-continuous features f ∈ {f : ||f ||L ≤ 1}.
In reality, the expert distribution dE is provided only as a finite set of samples, so in large environments,
much of the state-action space is not visited, and exact feature expectation matching forces the learned
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policy to never visit those unseen state-action pairs simply due to lack of data [12, 17]. Inspired by
the maximum entropy inverse reinforcement learning [33], we employ the principle of maximum
entropy to regularize the above optimization. Intuitively, the principle of maximum entropy [13]
prescribes the use of “the least committed” probability distribution that is consistent with known
problem constraints [32]. Specifically, we augment the objective function with an entropy regularizer
Es∼πE

[
H(π(·|s))

]
and learn a policy that maximizes the entropy over the expert state distribution..

This entropy term is defined differently from generative adversarial imitation learning (GAIL) [12] in
that the entropy term used here is averaged over the expert state distribution s ∼ πE , while in GAIL
the entropy regularizer averages over the state distribution induced by the policy Es∼π

[
H(π(·|s))

]
.

The reason for this is made clear below but we argue that such entropy definition still favors stochastic
policies and resolves the ambiguity of policies with respect to the expert state distributions [33, 11].
Accordingly, the new objective we consider is as follows

min
π

max
||f ||L≤1

[
E(s,a)∼dE [f(s, a)]− E(s,a)∼dπ [f(s, a)]

]
− βEs∼πE

[
H(π(·|s))

]
, (11)

where the entropy coefficient β determines the relative importance of the entropy term against the
distribution matching objective.

4.3 To avoid bias in off-policy formulation

One can of course adopt the same re-parametrization trick used in ValueDICE [17] and DualDICE [20]
to turn on-policy term E(s,a)∼dπ

[
f(s, a)

]
into off-policy. As we show below, this re-parametrization

implicitly assumes that the Markov chain induced by the policy π is ergodic during training. Namely,
it equivalently states the stationarity constraint in (7): as (7) holds for all (s, a) ∈ S ×A, multiply
right hand side (RHS) and left hand side (LHS) by a Lipschitz-continuous function f(s, a),

f(s′, a′)dπ(s′, a′) = (1− γ)f(s′, a′)d0(s′, a′) + γ

∫
s,a

f(s′, a′)π(a′|s′)p(s′|s, a)dπ(s, a)dsda,

which holds for ∀(s′, a′) ∈ S ×A and any f . Taking the integral with respect to s′ and a′, we have

E(s,a)∼dπ [f(s, a)] = (1− γ)E(s,a)∼d0 [f(s, a)] + γE(s,a)∼dπ(s,a),s′∼p(·|s,a),a′∼π(·|s′)[f(s′, a′)].

Moving the second term on the RHS to the LHS and merging it into one expectation, we have

E(s,a)∼dπ [f(s, a)− Bπf(s, a)] = (1− γ)E(s,a)∼d0 [f(s, a)],

where Bπ is exactly what was defined in the change of variable trick in (4). Given that f(s, a) is a
Lipschitz-continuous function, f(s, a) − Bπf(s, a) is also Lipschitz-continuous. The stationarity
constraint is subsumed into the change of variable. However, in practice, the training environment
may need to reset whenever some fatal actions are taken or adverse states are encountered, which
breaks the original Markov chain and the samples generated by rolling out the policy are not from
the stationary state-action distribution but instead from state marginal distribution [18], i.e., the
state-action distribution under a finite horizon, and the induced Markov chain is not irreducible, i.e.,
not ergodic. Specifically,

E(s,a)∼dπ
[
f(s, a)− γEs′∼P,a′∼π(s′)[f(s′, a′)]

]
= (1− γ)

T−1∑
t=0

γtEs∼pt,a∼π(s)
[
f(s, a)− γEs′∼P,a′∼π(s′)[f(s′, a′)]

]
= (1− γ)

T−1∑
t=0

γtEs∼pt,a∼π(s)[f(s, a)]− (1− γ)

T−1∑
t=0

γt+1Es∼pt,a∼π(s)[f(s, a)]

= (1− γ)Es∼p0,a∼π(s)[f(s, a)]− (1− γ)γTEs∼pT ,a∼π(s)[f(s, a)],

where T is the horizon, which is always finite in training. Thus the off-policy term is not equivalent to
the on-policy term as it introduces an extra bias term (1−γ)γTEs∼pT ,a∼π(s)[f(s, a)]. Also, it is clear
that the bias is introduced by the value of f at timestep T , not the terminal state-action pair. Thus,
even with the use of absorbing state, i.e., setting a special flag for the terminal states [16, 17], f(s, a)
could still be non-zero and thus the bias term remains. To avoid such bias, we propose to adopt the
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unbiased off-policy Bellman residuals without rewards [3]: f(s, a)−Es′∼P,a′∼π(s′)[γ(1−e)f(s, a)],
where et = 1 denotes the end of a finite episode at timestep t. The new objective is as follows:

min
π

max
||f ||L≤1

E(s,a)∼dE
[
f(s, a)−Bπe f(s, a)

]
−(1−γ)Es∼p0,a∼π(·|s)[f(s, a)]−βEs∼πE [H(π(·|s))],

where Bπe f(s, a) = Es′∼P,a′∼π(s′)[(1 − e)f(s, a)]. Similarly to ValueDICE, the f resembles a
“value-function” expressed in an off-policy manner, with expectations over expert demonstrations dE
and the initial state distribution p0.

4.4 Offline imitation algorithm: SoftDICE

One can also interpret the above optimization as policy iteration that alternates between policy
evaluation, i.e., max||f ||L≤1, and policy improvement, i.e., minπ , in the maximum entropy framework.
In the policy evaluation step, we compute the value f of a policy π according to the entropy regularizer.
For a fixed policy π, the entropy term can be subsumed into Bπf(s, a), yielding a soft policy
evaluation [7, 11]. Specifically, since the entropy is over the expert state distribution, we can subsume
it into Bπe f(s, a) by redefining the expectation as follows:

BπHf(s, a) = Es′∼p(·|s,a),a′∼π(·|s′)
[
γ(1− e)f(s, a)− β log(π(a′|s′))

]]
. (12)

Therefore, the final objective is:

min
π

max
||f ||L≤1

E(s,a)∼dE
[
f(s, a)− BπHf(s, a)

]
− (1− γ)Es∼p0,a∼π(·|s)[f(s, a)]. (13)

This new formulation echos the definition of the entropy regularizer, which is averaged over the
expert state distribution.

To enforce the Lipschitz constraint on f , we use the gradient penalty from [10]. Namely, a differen-
tiable function is 1-Lipschitz if and only if it has gradients with norm at most 1 everywhere. We thus
add a gradient penalty regularizer with respect to samples from expert demonstrations [10] to the
objective in (13) and rewrite as follows:

min
π

max
f

[
E(s,a)∼dE

[
f(s, a)− BπHf(s, a)

]
− (1− γ)Es∼p0,a∼π(·|s)[f(s, a)]

+ λE(s,a)∼dE
[
(||∇f(s, a)||2 − 1)2

]]
. (14)

In terms of the initial state sampling s ∼ p0, we adopt the scheme used in ValueDICE to treat the
expert demonstrations as samples from p0. The underlying intuition is to consider each full trajectory
(s0, a0, s1, a1, ..., sT ) as T distinct virtual trajectories {(st, at, st+1, at+1, ..., sT }. This sampling
scheme does not affect the optimality of the learned policy π since in Markov environments an expert
policy is expert regardless of the initial state distribution [22].

Our formulation is completely off-policy and can thus be applied for offline imitation learning. As
the “value function” f is updated in a soft manner, we name the resulting algorithm SoftDICE.
We show in the next section that, unlike ValueDICE, SoftDICE does not need to mix the expert
demonstrations with replay buffer samples. We use a similar optimization scheme in ValueDICE to
alternate the parameter update of f and π. The SoftDICE algorithm is presented in Algorithm 1 and
runs as follows: It first samples a batch of expert demonstration pairs from the expert replay buffer
and computes the loss JE on expert samples. Then it conducts the same sampling from the expert
replay buffer and computes the loss Jπ on initial samples. The gradient penalty is also computed
with respect to the expert samples. SoftDICE then updates parameters φ and θ with different losses
according to (14) using a stochastic gradient optimizer. This procedure repeats for T iterations and
returns the learned policy.

5 Experiments

5.1 Mujoco benchmark tasks

We evaluate the performance of SoftDICE on the suite of MuJoCo continuous control [29], interfaced
through OpenAI Gym [5]. The MuJoCo control tasks are characterized by varying difficulties and
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Algorithm 1 SoftDICE
1: Initialize replay bufferRE with expert demonstrations {(sE , aE , s′E , e)}
2: for t = 1 to T do
3: Sample {(s(i)E , a

(i)
E , s

′(i)
E , e)}B ∼ RE .

4: Obtain a′(i) ∼ πθ(·|s′(i)), a′(i)E ∼ πθ(·|s′(i)E ), for i = 1, ..., B
5: Compute loss on expert samples:
6: JE = 1

N

∑N
i=1

[
fφ
(
s
(i)
E , a

(i)
E

)
− γ(1− e)fφ

(
s
′(i)
E , a

′(i)
E

)
+ β log π(a

′(i)
E |s

′(i)
E )
]

7: Sample {s(i)0 }B ∼ RE .
8: Obtain a(i)0 ∼ πθ(·|s

(i)
0 ), for i = 1, ..., B

9: Compute loss on initial samples:
10: Jπ = (1− γ) 1

N

∑N
i=1

[
fφ
(
s
(i)
0 , a

(i)
0

)]
11: Compute gradient penalty on expert samples:
12: JGP = 1

N

∑N
i=1

[
||∇fφ

(
s
(i)
E , a

(i)
E

)
||2 − 1

]2
13: Update θ ← θ − ηθ∇θ(JE − Jπ)
14: Update φ← φ+ ηφ∇φ(JE − Jπ + JGP)
15: end for
16: return πθ

have been widely used for benchmarking imitation learning algorithms for continuous action space.
Following the ValueDICE implementation, all algorithms use networks with an MLP architecture
with 2 hidden layers and 256 hidden units. All networks use orthogonal initialization. We use the
Adam optimizer with learning rate 10−3 for the Lipschitz continuous function f , and 10−5 for the
policy π. We use gradient penalties from [10] to enforce Lipschitz continuity and regularize the actor
network with orthogonal regularization [5]. The entropy coefficient β is tuned to be 0.01 for best
performance on all tasks except Ant, which is set to 0.2. We repeat each experiment with 5 random
seeds and report means and standard deviations in all plots.

Figure 1: Offline evaluation with only 1 demonstration trajectory (no sampling and policy rollout;
dash lines mark the expert performance).

Since SoftDICE operates completely offline, we first compare it with two offline imitation learning
methods: behavioral cloning (BC) [21] and the offline variant of ValueDICE. Theoretically, Val-
ueDICE considers a completely off-policy objective and can thus be adapted to be offline by setting
the “replay buffer regularization” coefficient to zero [17]. This means that no off-policy samples
are mixed into the expert demonstrations and used to regularize training. We use the open source
implementation without changing any hyperparameters.3 During training, we randomly sample only
one full trajectory from the demonstrations provided by the code repository. Results are presented in
Figure 1. With such limited data, BC completely fails to recover any expert policies in all benchmark
tasks. However, SoftDICE quickly learns the optimal policy in Ant-v2, HalfCheetah-v2 and Hopper-
v2 in less than 50K gradient updates. Notably, as training proceeds in Ant-v2 and HalfCheetah-v2, the
performance of SoftDICE still remains close to the expert level while the performance of ValueDICE
drops significantly, which could be potentially caused by the biased gradient updates. We also notice
that all algorithms fail to achieve the expert performance on Walker2d-v2. This could be that, with a
single trajectory, learning the expert policy for this specific environment may be very challenging.

3https://github.com/google-research/google-research/tree/master/value_dice, under
Apache License 2.0.
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Figure 2: Evaluation with only 1 demonstration trajectory and samples from policy rollout (black
dash lines and grey dash lines mark the expert performance and BC performance respectively).

We provide a full comparison across a varying number of trajectories in the appendix and SoftDICE
can achieve the expert performance on Walker2d-v2 when the number of trajectories increases.

The original ValueDICE needs to roll out the policy in training to collect samples to increase the
diversity of the expert demonstrations. The original paper reported that, by “regularizing” expert
demonstrations with off-policy samples, ValueDICE could be enhanced for a small number of expert
samples. We thus adopt the same enhancement for SoftDICE and also compare it against ValueDICE
in the online setting, where the policy is allowed to roll out for collecting samples. We also consider
Discriminator-Actor-Critic (DAC) [16] as a baseline since DAC is an adversarial imitation approach
with good sample efficiency. Similarly to the offline setting, we also randomly sample one trajectory
as the expert demonstration. We roll out the policy after every 5 gradient updates to the policy and
use the same small replay buffer regularizer α = 0.1 as in ValueDICE. Figure 2 shows that the policy
rollout improves the performance of ValueDICE in general. However, SoftDICE still outperforms
ValueDICE in Ant-v2 and HalfCheetah-v2. SoftDICE also achieves better sample efficiency than
DAC in Ant-v2 and Hopper-v2. We also notice the same poor performance of all algorithms on
Walker2d-v2, which, we argue, could be caused by the scarcity of demonstration data in training.

5.2 Ablation study on entropy regularization

Figure 3: Ablate entropy regularization

One key difference between SoftDICE and ValueDICE is
that SoftDICE uses maximum entropy to regularize the
policy training. We therefore ablate this entropy regular-
ization on both methods. Specifically, we consider using
different entropy coefficients in the offline training for
SoftDICE, and also add an additional entropy term for
ValueDICE. Due to its formulation, ValueDICE cannot
integrate such a policy entropy term into any of its expec-
tations and we thus treat the entropy term as an extra loss
to the policy optimization. We use Ant-v2 as the abla-
tion task as the performance gap between these methods
is large. Figure 3 shows that entropy regularization does
have an impact on the convergence of SoftDICE: no en-
tropy regularization results in a performance drop similar
to that in ValueDICE and a small regularizer, e.g., 0.1 and
0.2 stablizes training while a large regularizer impedes
learning. By contrast, even with the same levels of entropy
regularization, ValueDICE still fails to perform compara-
bly, which implies that entropy regularization itself is not
the key for ValueDICE to learn good policies in this task.

6 Related Work

The study of imitation learning traces back to behavior cloning (BC) [21], in which the optimal policy
is learned by minimizing the errors between policy predictions and human demonstrations. Such
supervised methods suffer greatly from compounding errors caused by distribution shift when the
number of given demonstrations is limited [24, 12]. Recent imitation learning approaches model the
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problem as a decision-making task based on a Markov decision process, which seeks to learn a reward
function that could then be used as a proxy to learn the optimal policy, a.k.a. inverse reinforcement
learning (IRL) [1]. Many early IRL approaches decompose the reward as a linear combination of
features and use the feature expectations of a policy as the proxy quantity to measure the similarity
between expert policy and an arbitrary policy, i.e., feature expectation matching [1, 28, 33]. Our
formulation of off-policy distribution matching yields an intermediate objective that resembles the
feature expectation matching. In particular, it is close to the game-theoretic approach [28], which
maximizes performance relative to the expert and also adversarially updates the feature combinations.
The key difference is that our formulation considers a much larger feature space, all Lipschitz
continuous functions, while the game-theoretic approach constrains features to be in a limited set. In
general, learning a reward function from a given set of demonstrations is ill posed, as there could
be many reward functions that explain the demonstrations. Recent studies focus on adversarial
imitation [12] which defines imitation learning as a distribution matching problem and leverages
GANs [9] to minimize the Jensen-Shannon divergence between distributions induced by the expert
and the learning policy. This approach avoids the ambiguity of learning a reward function from
demonstrations but is generally sample intensive.

To improve sample efficiency, many methods extend adversarial imitation to be off-policy. For
instance, Discriminator-actor-critic (DAC) [16] improves the sample efficiency by reusing previous
samples stored in a relay buffer. However, this approach still relies on the non-stationary reward
signals that are generated by the discriminator, which can make the critic estimation hard and training
unstable. Recent work proposes to train a fixed reward function through estimating the support of
demonstrations and then trains the critics with the fixed reward [31]. This support estimation itself
can be hard given that only a limited number of empirical samples are available from the considered
distributions. Another line of off-policy distribution matching approaches focuses on estimating
the critics directly without learning any reinforcement signals [25, 17]. The state-of-the-art along
this line is ValueDICE [17], which casts distribution matching as off-policy density ratio estimation
and updates the policy directly via a max-min optimization. However, as we show in the analysis
and experiments, there are several problems in the formulation of ValueDICE that can significantly
influence its empirical performance and convergence guarantees.

7 Conclusion

We present SoftDICE, an off-policy distribution matching approach for sample-efficient imitation
learning. SoftDICE fixes several key problems in ValueDICE [17]: First, the objective of ValueDICE
contains logarithms and exponentials of expectations, for which the mini-batch gradient estimate
is always biased. Second, the objective in ValueDICE is regularized with replay buffer samples
when expert demonstrations are limited in number, which however changes the original distribution
matching objective. Third, the re-parametrization trick used to derive the off-policy objective
implicitly assume that the induced Markov in training is always ergodic, which rarely holds in
practice. We leverage the Earth-Mover Distance and consider an entropy-regularized off-policy
objective, which eliminates all the aforementioned issues in ValueDICE and also yields a completely
offline algorithm. Empirical results show that SoftDICE recovers the expert policy with only one
demonstration trajectory and no further on-policy/off-policy samples. Also, it stably outperforms
ValueDICE and other baselines in terms of sample efficiency on Mujoco benchmark tasks.

Limitations. We see limitations in the following aspects. First, SoftDICE is not directly compared
with other offline imitation algorithms. As SoftDICE is proposed to fix problems in ValueDICE, the
comparison with other offline methods is left for future work. Second, we only evaluate SoftDICE on
the MuJoCo benchmark tasks. It would also be interesting to see how SoftDICE could be generalized
to real-world applications, e.g., human-like autonomous driving.

Societal impact. The study of imitation learning could be important to understand human intelli-
gence. Sample efficiency, either the number of interactions required for training or the amount of
demonstration data needed for imitation, could be the first step to understand how to learn fast and
efficiently as human beings. SoftDICE learns a policy with only limited expert data and no further
interactions, and provides a computational perspective to understand the efficiency in human imitation
learning. However, SoftDICE could be misused to deceive people by creating fake behaviors, e.g.,
exactly imitating one’s gaits. Also, if the demonstrations contain ethnic-sensitive human data, the
policy learned via SoftDICE could be biased.
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A Appendices

A.1 Offline evaluation with different number of demonstration trajectories
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Figure 4: Offline evaluation with different number of demonstration trajectories (black dash lines
mark the expert performance.
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